DSP第五章数字滤波器基本结构-课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《DSP第五章数字滤波器基本结构-课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- DSP 第五 数字滤波器 基本 结构 课件
- 资源描述:
-
1、第五章第五章数字滤波器结构数字滤波器结构DF(Digital Filter)第一节第一节 引引 言言一、什么是数字滤波器一、什么是数字滤波器 顾名思义:其作用是对输入信号起到滤波的作用;即DF是由差分方程描述的一类特殊的离散时间系统。它的功能:把输入序列通过一定的运算变换成输出序列。不同的运算处理方法决定了滤波器的实现结构的不同。二、数字滤波器的工作原理则:是其付氏变换。是系统的输出,是其付氏变换。是系统的输入,设)()()()(jwjweYnyeXnxh(n)x(n)y(n)作原理。这就是数字滤波器的工符合我们的要求,使滤波器输出选取表示)后变成其系统性能用经过滤波器看出:输入序列的频谱)(
2、)(),()()()()()()()()()(1jwjwjwjwjwjwjwjwjwmeHeXeHeHeXeHeXeHeXFmxmnhny则LTI系统的输出为:三、数字滤波器表示方法 有两 种表示方法:方框图表示法;流图表示法.数字滤波器中,信号只有延时延时,乘以常数乘以常数和相加相加三种运算。所以DF结构中有三个基本运算单元:加法器,单位延时,乘常数的乘法器。1、方框图、流图表示法、方框图、流图表示法Z-1单位延时系数乘相加Z-1a方框图表示法:方框图表示法:信号流图表示法:信号流图表示法:a把上述三个基本单元互联,可构成不同数字网络或运算结构,也有方框图表示法和流图表示法。2.例子)()2
3、()1()(021nxbnyanyany例:二阶数字滤波器:其方框图及流图结构如下:Z-1Z-1x(n)y(n)b0a1a2x(n)y(n)b0a1a2Z-1Z-1看出:可通过流图或方框图看出系统的运算步骤和运算结构。以后我们用流图来分析数字滤波器结构。DF网络结构或DF运算结构二个术语有微小的差别,但大抵一样,可以混用。四、数字滤波器的分类 滤波器的种类很多,分类方法也不同。1.从功能上分;低、带、高、带阻。2.从实现方法上分:FIR、IIR 3.从设计方法上来分:Chebyshev(切比雪夫),Butterworth(巴特沃斯)4.从处理信号分:经典滤波器、现代滤波器 等等。1、经典滤波器
4、 假定输入信号x(n)中的有用成分和希望去除的成分,各自占有不同的频带。当x(n)经过一个线性系统(即滤波器)后即可将欲去除的成分有效地去除。但如果信号和噪声的频谱相互重叠,那么经典滤波器将无能为力。|X(ejw)|wwc有用无用wc|H(ejw)|Y(ejw)|wwc2.现代滤波器 它主要研究内容是从含有噪声的数据记录(又称时间序列)中估计出信号的某些特征或信号本身。一旦信号被估计出,那么估计出的信号将比原信号会有高的信噪比。现代滤波器把信号和噪声都视为随机信号,利用它们的统计特征(如自相关函数、功率谱等)导出一套最佳估值算法,然后用硬件或软件予以实现。现代滤波器理论源于维纳在40年代及其以
5、后的工作,这一类滤波器的代表为:维纳滤波器,此外,还有卡尔曼滤波器、线性预测器、自适应滤波器。本课程主要讲经典滤波器,外带一点自适应滤波器.3.模拟滤波器和数字滤波器 经典滤波器从功能上分又可分为:低通滤波器(LPAF/LPDF):Low pass analog filter带通滤波器(BPAF/BPDF):Bandpass analog filter高通滤波器(HPAF/HPDF):High pass analog filter带阻滤波器(BSAF/BSDF):Bandstop analog filter 即它们每一种又可分为:数字(Digital)和模拟(Analog)滤波器。4.模拟滤波
6、器的理想幅频特性cc)(jHcc)(jHcc)(jH)(jH1c2c1c2cLPAFHPAFBPAFBSAF5.数字滤波器的理想幅频特性2c)(jweHLPDFHPDFBPDFBSDF.23.2.2)(jweH)(jweH)(jweH五、研究DF实现结构意义1.滤波器的基本特性(如有限长冲激响应FIR与无限长冲激响应IIR)决定了结构上有不同的特点。2.不同结构所需的存储单元及乘法次数不同,前者影响复杂性,后者影响运算速度。3.有限精度(有限字长)实现情况下,不同运算结构的误差及稳定性不同。4.好的滤波器结构应该易于控制滤波器性能,适合于模块化实现,便于时分复用。六、本章介绍主要的内容1.介绍
7、IIR滤波器实现的基本结构。2.介绍FIR滤波器实现的基本结构。3.介绍一种特殊的滤波器结构实现形式:格型滤波器结构.第二节 IIR DF的基本结构一、IIR DF特点1.单位冲激响应h(n)是无限长的n2.系统函数H(z)在有限长Z平面(0|Z|)有极点存在。3.结构上存在输出到输入的反馈,也即结构上是递归型的。4.因果稳定的IIR滤波器其全部极点一定在单位园内。二、IIR DF基本结构IIR DF类型有:直接型、级联型、并联型。直接型结构:直接I型、直接II型(正准型、典范型)。1、IIR DF系统函数及差分方程 一个N阶IIR DF有理的系统函数可能表示为:)()(1)10zXzYZaZ
8、bzHNiiiMiii(以下我们讨论M=M)只需N级延时单元,所需延时单元最少。故称典范型。(3)同直接I型一样,具有直接型实现的一般缺点。例子81434521148)21)(41(21148)2323223zzzzzzzzzzzzzH(已知IIR DF系统函数,画出直接I型、直接II型的结构流图。解:为了得到直接I、II型结构,必须将H(z)代为Z-1的有理式;x(n)8-411Z-1Z-1y(n)5/4-3/4Z-1Z-1Z-11/8Z-1-25/4Z-1Z-1Z-1-3/41/8-411-28y(n)x(n)注意反馈部分系数符号作业 P226 第1题4、级联型结构(1)系统函数因式分解一
9、个N阶系统函数可用它的零、极点来表示即系统函数的分子、分母进行因式分解:NiiMiiNiiiMiiizdzCAZaZbzH111110)1()1(1)(可以展开为:或者是共轭复根或者是实根只有两种情况:和零、极点都是实数,的系数)()(,)(badcbazHiiii(2)系统函数系数分析11211*1111211*111111)1)(1()1()1)(1()1()1()1()(NiNiiiiMiMiiiiNiiMiizqzqzpzhzhzgAzdzcAzH:22:,2121则的二阶因子,并起来构成一个实系数若将每一对共轭因子合;其中为复根。为实根;式中:MMMNNNqhpgiiii112122
10、11111212,111)1()1()1()1()(NiNiiiiMiMiiiizzzpzzzgAzH(3)基本二阶节的级联结构112122111112122111)1()1()1()1()(NiNiiiiMiMiiiizzzpzzzgAzHMiiiiizzzzAzH122112211)1(1)()(数二阶因子形式:就可以完全分解成实系那么,整个)(zH的二阶因子。即为二次项系数看作二阶因子的特例。及若把单实因子0),()1()1(22111111iiMiiMiizpzg(4)滤波器的基本二阶节 所以,滤波器就可以用若干个二阶网络级联起来构成。这每一个二阶网络也称滤波器的基本二阶节(即滤波器的
11、二阶节)。一个基本二阶节的系统函数的形式为:2211221111)(zzzzzHiiii一般用直接II型(正准型、典范型表示)x(n)1ia2iZ-1Z-1a1i2iy(n)(5)用二阶节级联表示的滤波器系统整个滤波器则是多个二阶节级联MiizHAzH1)()(x(n)11a21Z-1Z-1a112112a22Z-1Z-1a12221Ma2MZ-1Z-1a1M2My(n).例子)1)(1()1)(1(21221)21121131321zzzzzzzzzzzzH(设IIR数字滤波器系统函数为:1Z-1111Z-1Z-111y(n)x(n)(6)级联结构的特点从级联结构中看出:它的每一个基本节只关
12、系到滤波器的某一对极点和一对零点。调整1i,2i,只单独调整滤波器第I对零点,而不影响其它零点。同样,调整a1i,a2i,只单独调整滤波器第I对极点,而不影响其它极点。级联结构特点:(a)每个二阶节系数单独控制一对零点或一对极点,有利于控制频率响应。(b)分子分母中二阶因子配合成基本二阶节的方式,以及各二阶节的排列次序不同。作业 P226第2题5、并联型(1)系统函数的部分分式展开将系统函数展成部分分式的形式:用并联的方式实现DF。)时,当0(11111)(01122111011010ANMzdAzdAzdAAzdAAZaZbzHNNNiiiNiiiMiii“相加”在电路中实现用并联。如果遇到
13、某一系数为复数,那么一定有另一个为共轭复数,将它们合并为二阶实数的部分分式。(2)基本二阶节的并联结构212211110111011)(NkkkkkNiizzzzAiAzHAN1Z-1a1x(n)aN1a11Z-1Z-1A111y(n)A0.01a21a1N2a2N20N21N2其实现结构为:.(3)并联型基本二阶节结构2111101)(zzzzHi并联型的基本二阶节的形式:其中:要求分子比分母小一阶x(n)0a2Z-1Z-1a11y(n)(4)并联型特点(1)可以单独调整极点位置,但不能象级联那样直接控制零点(因为只为各二阶节网络的零点,并非整个系统函数的零点)。(2)其误差最小。因为并联型
14、各基本节的误差互不影响,所以比级联误差还少。若某一支路a1误差为1,但总系统的误差仍可达到少1。(因为分成a1,a2.支路).注意:(1)为什么二阶节是最基本的?因为二阶节是实系数,而一阶节一般为复系数。(2)统一用二阶节表示,保持结构上的一致性,有利于时分多路复用。(3)级联结构与并联结构的基本二阶节是不同的。(5)例子21113132114616121221)zzzzzzzzzzH(其并联结构为:x(n)Z-1Z-114y(n)161-61Z-1作业 P226页,第3题。第三节FIR DF的结构(有限长冲激响应滤波器)一、FIR DF的特点(1)系统的单位冲激响应h(n)在有限个n值处不为
15、零。即h(n)是个有限长序列。(2)系统函数|H(z)|在|z|0处收敛,极点全部在z=0处(即FIR一定为稳定系统)(3)结构上主要是非递归结构,没有输出到输入反馈。但有些结构中(例如频率抽样结构)也包含有反馈的递归部分。二、FIR的系统函数及差分方程长度为N的单位冲激响应h(n)的系统函数为:100010)()()(,01)()()NmiNiiiMiiiNnnmnxnhnyazazbzHZnhzH其差分方程为:即无反馈情况中它实际上为一般(三、FIR滤波器实现基本结构 1.FIR的横截型结构(直接型)2.FIR的级联型结构 3.FIR的频率抽样型结构 4.FIR的快速卷积型结构 5.FIR
16、的线性型 结构1、FIR直接型结构(卷积型、横截型)(1)流图h(0)h(1)h(2)h(N-1)h(N)Z-1Z-1Z-1Z-1x(n)y(n)倒下h(0)h(1)h(N-1)h(N)Z-1Z-1Z-1Z-1y(n)x(n)(2)框图Z-1Z-1Z-1Z-1.x(n)h(0)h(1)h(2)h(N-1)y(n)2、级联型结构(1)流图 当需要控制滤波器的传输零点时,可将H(z)系统函数分解成二阶实系数因子的形成:212211010)()()NiiiiNnnzzZnhzH(即可以由多个二阶节级联实现,每个二阶节用横截型结构实现。x(n)11Z-1Z-12112Z-1Z-1221N/2Z-1Z-
17、12N/2y(n).01020N/21(2)级联型结构特点 由于这种结构所需的系数比直接型多,所需乘法运算也比直接型多,很少用。由于这种结构的每一节控制一对零点,因而只能在需要控制传输零点时用。作业 P226页第4,5题3、频率抽样型结构(1)频率抽样型结构的导入 若FIR DF 的冲激响应为有限长(N点)序列h(n),则有:h(n)H(z)H(k)H(ejw)(kHDFT取主值序列N等分抽样单位园上频响Z变换内插所以,对h(n)可以利用DFT得到H(k),再利用内插公式:1011)(1)1()(NkkNNzWkHNzzH来表示系统函数。(2)频率抽样型滤波器结构1011)(1)1()(Nkk
18、NNzWkHNzzH由:得到FIR滤波器提供另一种结构:频率抽样型结构。它是由两部分级联而成。10)(1)()(NkkczHNzHzH其中:级联中的第一部分为梳状滤波器:第二部分由N个谐振器组成的谐振柜。)1()(NczzH11)()(zWkHzHkNk(3)梳状滤波器(a)零、极点特性 它是一个由N节延时单元所组成的梳状滤波器。它在单位园上有N个等分的零点、无极点。)1()(NczzH由看出:NwNkezkNWererrezzkNjkkjwNNjwjwN2:10210)(1,10102而等间隔角度之间为零点。即代入单位园令:N2(b)幅频特性及流图2sin2)cos1(2sin)cos1()
19、(sincos11)(22NwNwNwNweHNwjNweeHjwcjNwjwc频率响应为:w|H(ejw)|N20.幅频曲线:1x(n)y(n)-Z-N梳状滤波器信号流图:(4)谐振器 谐振器:是一个阶网络。11)()(zWkHzHkNkZ-1H(k)Hk(z)谐振器的零极点:此为一阶网络,有一极点:)(2)1(2zHkNwrreewzkjwkNjkN处响应为无穷大,此时一阶网络频率在单位园kNW(5)谐振柜 谐振柜:它是由N个谐振器并联而成的。101101)()(NkkNNkkzWkHzH这个谐振柜的极点正好与梳状滤波器的一个零点(i=k)相抵消,从而使这个频率(w=2k/N)上的频率响应
20、等于H(k).)()()()()()(22kHezkHezzHzHNkjkNkjkkc将两部分级联起来,得到频率抽样结构。(6)频率抽样型结构流图Z-1H(0)Z-1H(1)Z-1H(2)Z-1H(N-1)N1-Z-Nx(n)y(n)kNWkNWkNWkNW.(7)频率抽样型结构特点(1)它的系数H(k)直接就是滤波器在 处的频率响应。因此,控制滤波器的频率响应是很直接的。(2)结构有两个主要缺点:(a)所有的相乘系数及H(k)都是复数,应将它们先化成二阶的实数,这样乘起来较复杂,增加乘法次数,存储量。(b)所有谐振器的极点都是在单位园上,由 决定考虑到系数量化的影响,当系数量化时,极点会移动
21、,有些极点就不能被梳状滤波器的零点所抵消。(零点由延时单元决定,不受量化的影响)系统就不稳定了。kNwk2kNw(8)修正的频率抽样结构(a)产生的原因 为了克服系数量化后可能不稳定的缺点,将频率抽样结构做一点修正。即将所有零极点都移到单位园内某一靠近单位园、半径为r(r1)的园上,同时梳状滤波器的零点也移到r园上。(即将频率采样由单位园移到修正半径r的园上)(b)修正的频率抽样结构的系统函数1,2,1,0,)()()()()()(,1)(1)(1)1()(2101NkrezzHkHzHzHkHkHkHrkHzrWkHNzrzHkNjkWztwzrrrNkkNNNkNkN的极点为则谐振器的各个
22、根即(因此有,但是由于为新抽样点上的抽样值 为了使系数是实数,可将共 轭根合并,这些共轭根在半径为r的圆周上以实轴成对称分布。(c)修正的频率抽样结构的系统 极点分布00N2|z|=r2N12N12N1N10kRezzj Imzj ImRez0kN=8N=7*kkNzz(d)修正频率结构的复根部分:第k和第N-k个谐振器合并为一个实系数的二阶网络 因为h(n)是实数,它的DFT也是圆周共轭对称的。因此,可以将第k和第N-k个谐振器合并为一个二阶网络。1,3,2,1)()*NkkNHkH()Re2),Re2)2cos(211)(1)(1)(1)(1)()(102211102*2*11*11)(1
23、kNkkkkkNkNkNkNkNkNkNNkNkWkHrkHzrNkrzzzWWrrWWzkHzrWkHzrWkHzrWkNHzrWkHzH(其中:(e)有限Q的谐振器 第k和第N-k个谐振器合并为一个二阶网络的极点在单位园内,而不是在单位园上,因而从频率响应的几何解释可知,它相当于一个有限Q的谐振器。其谐振频率为:kNwk2)2cos(2Nkr2r1z1zk0k1(f)修正频率抽样结构的谐振器的实根部分除了共轭复根外,还有实根。当N=偶数时,有一对实根,它们分别为 两点。2,0Nkk101)0()(rzHzH121)2()(rzNHzHN当N=奇数时,只有一个实根z=r(k=0),即只有H0
24、(z).1zr1z-r)2(NH)0(H(g)修正频率抽样结构流图(N=偶数)1zr)0(H1z-r)2(NHNNzrx(n)2cos(2Nr2r1z1z0111)2cos(2Nkr2r1z1z20N21NN1y(n).12/122111011)2cos(2112(1)0(1)1()(NkkkNNzrkNrzzrzNHrzHNzrzH)(h)修正频率抽样结构流图(N=奇数)1zr)0(HNNzrx(n)2cos(2Nr2r1z1z0111)2cos(2Nkr2r1z1z20N21NN1y(n).12/12211101)2cos(211)0(1)1()(NkkkNNzrkNrzzrzHNzrzH
25、(i)修正频率抽样结构的特点(1)结构有递归型部分谐振柜又有非递归部分-梳状滤波器。(2)它的零、极点数目只取决于单位抽样响应的长度,因而单位冲激响应长度相同,利用同一梳状滤波器、同一结构而只有加权系数0k,1k,H(0),H(N/2)不同的谐振器,就能得到各种不同的滤波器(3)其结构可以高度模块化,适用于时分复用。(j)频率抽样结构的应用范围(1)如果多数频率特性的采样值H(k)为零,例:窄带低通情况下,这时谐振器中剩下少数几个所需要的谐振器,因而可以比直接型少用乘法器,但存储器还是比直接型多用一些。(2)可以共同使用多个并列的滤波器。例:信号频谱分析中,要求同时将信号的各种频率分量分别滤出
展开阅读全文