一次函数的最值问题.-共19页课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《一次函数的最值问题.-共19页课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一次 函数 问题 19 课件
- 资源描述:
-
1、一次函数的最值问题期末复习之万州桥亭中学 秦 毅 一次函数在自变量x允许取值范围(即全体实数)内,它是没有最大或最小值的。但是,如果给定了自变量的某一个取值范围(全体实数的一部分),那么y=kx+b的最大值或最小值就有可能存在。导言:一般地,有下面的结论:分类讨论图1析例:一般地,有下面的结论:分类讨论图2析例:一般地,有下面的结论:分类讨论图3析例:一般地,有下面的结论:分类讨论应用 凡是用一次函数式来表达实际问题(自变量有取值范围),求其最值时,都需要用到边界(极限值)特性,像物质的运输与供应、生产任务的分配和订货、邮件的投递及空袋的调运等。析例:分析:“求最大值“与函数有关,应建立函数关
2、系式。析例:解:用同一个“元”表示相关量析例:析例:分析:1、“距离总和最小”与函数相关,建立函数关系式。(为了便于表述,设自变量x为“距A楼的距离”,函数y设为“距离总和最小”)2、”等于“与等式相关,建立方程。(另:A、B、C三楼有间距,应为分段函数。且按方案分类讨论。)奶站之和奶站之和奶站之和等量关系为:BCASSS3、”在方案二的情况下,若A楼每天取奶的人数增加(增加的人数不超过22人)“设增加人数为a(a22),可建立关于x与a的二元一次方程,即得x与a的 函数关系式,从而可讨论最值问题。析例:析例:析例:小结:1、凡是用一次函数式来表达实际问题(自变量有取值范围),求其最值时,都需要用到边界(极限值)特性,像物质的运输与供应、生产任务的分配和订货、邮件的投递及空袋的调运等。2、设元时,要用同一个“元”表示相关量。代表函数的”元“要另设。Thank you
展开阅读全文