数学教学设计的内涵及案例分析课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数学教学设计的内涵及案例分析课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 教学 设计 内涵 案例 分析 课件
- 资源描述:
-
1、12引言数学教学设计的内涵 数学教学设计的案例分析 3引 言 数学教学实践中的一些现象:(1)有些教师前20分钟就把课前准备的内容讲完了,剩下的时间不知道该做些什么。(2)有些教师的板书比较凌乱,在课堂教学进程中,想写在哪里就写在哪里,随意性太强,板书缺乏美感和整体感。(3)有些教师的课题引入、课堂提问等教学环节单一,难以引起学生学习的积极性。4(4)有些教师在讲解数学概念、数学定理、数学题目时,偏重“照字面意义讲解”,过多强调机械记忆,学生只能达到表面理解。(5)有些教师仅copy一些优秀教案,缺乏结合学生的实际情况来进行有关的思考,教学效果并不太理想。以上这些现象导致教学效率不高、教学效果
2、不佳。这些现象的出现有很多原因,其中一条重要的原因就是教师缺乏教学设计的方法和思想。5一、数学教学设计的内涵 1什么是数学教学设计 2为什么要进行数学教学设计 3数学教学设计的基本要素 4数学教学设计中教师所需要具备的几个意识 5数学教学设计的前期分析6 1什么是数学教学设计 教学设计是指教师为达到一定的教学目标,对教学活动进行的系统规划、安排与决策。7 2为什么要进行数学教学设计(1)教学设计依据教学原理,遵循教学过程的基本规律,制定教学目标,以解决教什么的问题。(2)教学设计对怎样才能达到教学目标进行创造性的决策,以解决怎么教的问题。(3)教学设计把教学过程各要素看成一个系统。分析教学问题
3、和需求,确立解决的程序纲要,使教学过程最优化。8 (4)教学设计是提高学习者获得知识、技能的效率和兴趣的技术过程,其功能在于运用适宜的教学方法设计教学过程,使之成为一种具有操作性的程序。简而言之,教师进行教学设计的最终目的是为了使学生更高效地学习,开发学生的学习潜能,塑造学生的健全人格,以促进学生的全面发展。93数学教学设计的基本要素数 学 教 学目标分析数 学 教 学内容分析学 生 情 况分析形 成 教 学设计意图数 学 教 学设计方案数学教学设计方案的实施与评价10 在进行数学教学设计时,需要格外注意以下两个问题:(1)“预设”与“生成”的关系。教师在实施教学之前需要进行教学设计,但在教学
4、过程中又不可拘泥于教学设计,防止被教学设计束缚了手脚,一切应以学生为学习的主体,以教促学,对课堂教学的各种变化进行综合把握,及时作出正确的判断,采取有效的应对措施。这也是教学中的“预设”与“生成”的关系。(2)处理好“模仿”与“创新”的关系。“仿”是“创”的必经之路,“创”是“仿”的目的所在。114.数学教学设计中教师所需要具备的 几个意识 对于教学设计而言,数学教师的观念更新意识、问题意识、反思意识、创新意识显得尤其重要。这些意识是教师素质的重要组成部分,是形成教育、教学能力的前提,是影响教师行为的诱因,因而对教学设计有直接的制约作用。12(1)观念更新意识 所谓观念,指教育观念,即教师对教
5、育本质的认识和体悟。作为数学教师,其教育观念就是对数学教育本质的认识和体悟。观念更新意识,指教师对自已所持的教育观念有清晰的认识,对不断萌生和发展的新的教育观念有敏锐的洞察力,进而产生更新自身旧观念的经常性愿望和行为。数学教育观念分为数学观和教育观两个层面。数学观是对数学学科本质的认识;教育观是对学与教本质的认识。13 对数学本质的理解,历史上曾有许多不同的观点,有学者将其梳理为15种学说:万物皆数说、哲学说、符号说、科学说、工具说、逻辑说、创新说、直觉说、集合说、结构说、模型说、活动说、精神说、审美说、艺术说。这些观点实际上是人们从不同侧面对数学作出的解释,显然,这些对数学本质的不同看法会对
6、应不尽相同的教育理念。如果一个教师注重数学的学科结构,他就会自觉地把数学视为模式的科学;如果注重过程,就会认为数学是直觉和逻辑的产物;如果注重社会价值,又会把数学理解为是一种工具,等等。这些个人的数学观反映在教学设计中,就会产生不同的教学目标和价值取向。14 从认识论的层面看,由把数学视为绝对真理的绝对主义演化而成的静态数学观,与把数学视为相对真理的可误主义演化而成的动态数学观对数学教育的影响最大。如果把数学看成绝对真理,看成是静态知识的堆砌,那么教学的目的就是教师把这些知识原样地传授给学生,教学设计就是一种“结果型”范式,教学评价则以学生掌握的知识量作为评价指标。如果认为数学真理不是绝对的,
7、而是可误的,把数学看作由问题、语言、命题、理论和观念组成的复合体,是动态的知识发展系统,那么反映在教育上便是一种实现人的发展的教育观,以培养学生的批判意识和创造力为主要目的,其教学设计是一种“过程型”的范式。15 同样,不同的教学理论对教学的本质有不同的解释,从而对应着不同的教学设计思想。行为主义强调剌激与反应的联结,教学设计就只关注教师的教学操作和学生学习结果的操作。认知主义以信息加工学说解释学习的本质,教学设计就要涉及教师的教学操作、学习者的特征、学习的信息加工过程、学习所获得的知识类型以及学生学习结果的操作。人本主义强调以人的发展为本,教学设计就会更多地体现使学生达到自我实现的目的。建构
8、主义认为知识学习是学习者自我建构和社会建构的结果,教学设计就会渗透着促进学生知识建构的策略。16 新观念的产生不是对旧观念的完全扬弃,而是一种整合。事实上,每一种观念都有自身合理的一面,因教学内容不同,教学设计可以以不同的理论作为基础。因此,更确切地说,观念更新意识要求教师有整合观念的意识、接受新观念的意识、替代旧观念的意识。17 (2)问题意识 问题意识是指在人们的认识活动中,活动主体对既有的知识经验和一些难于解决的实际问题或理论问题所产生的怀疑、困惑、焦虑、探究的心理状态,并在其驱动下,不断提出问题和解决问题。18 在数学教学设计中,教师的问题意识主要表现在两个方面,其一,追溯问题产生的背
9、景和缘由的意识。其二,不断提出新问题的意识。19 例 对于问题:已知a,bR,并且ab。则上述结论会变为什么形式?bambma20 (3)反思意识 反思是立足于自我之外的批判地考察自己的行动及情境的能力。反思意识即教师自觉产生对自己的活动目的、活动计划、活动策略、活动过程及活动评价的反思欲望和信念。反思不是单纯的事后行为,还包括事前和办事过程中的反思。21 在数学教学设计中,首先,设计者要对教学目的进行反思。一个教学设计应反映出教学目的的多维性。数学知识的建构、数学技能的形成、数学能力的发展、数学思想方法的渗透、数学精神的领悟、数学知识产生过程的体验等,都是数学教学的目的。22 第二,要对教学
10、设计的理论基础进行反思。在教学设计中,自己所持有的数学观是什么?是以哪一种教育或心理学理论作为基础的?为什么要这样做?等等。第三,对教学程序的设计及教学策略的选择的反思。反思知识展示的顺序是否合理;选择的教学策略是否恰当;例题与习题的搭配是否符合教学目的的要求;采用的媒体是否能真正发挥辅助教学的功能;为什么要这样设计教学程序?为什么要选择这样的教学策略?等等。第四,教学实施后的反思。主要是对教学效果评价的反思,如何改进教学设计的反思。23(4)创新意识 创新意识指教师的创新的欲望和信念,其核心是自我批判的意识,不受固有思维模式的束缚,勇于立新。24 一般说来,教学设计中的创新主要包括:教学内容
11、组织的创新。譬如,以不同的材料作为“先行组织者”;对教材内容的解构与重组;对概念、命题赋予不同的现实模型或不同的数学模型;对例题、习题的改造与扩充等,均是在原有基础上的创新。教学模式构建的创新。根据不同的教学内容合理地选择教学模式,在此基础上,更注意综合一些教学模式,创建一些新的教学模式。模式创新的最高境界,或许是一种不受模式的约束,融有模式于无模式之中。教学组织形式的创新。教育技术的创新。表现为多媒体的合理组合,课件编制更富创意等。25 值得强调的是,教师的创新意识不仅能体现在教学设计的“外部产品”上,而且更重要的在于这种榜样式的创新意识能够渗透在教学实施的过程中,给学生以潜移默化地熏陶,从
12、而达到培养学生创新意识的目的。26 5.数学教学设计的前期分析 数学教学设计的前期分析可以从目标分析、内容分析、学生分析3个方面来进行。(1)数学教学的目标分析 数学教学设计首先要进行目标设计,即分析教什么?达到什么程度?这是数学教学设计的核心问题之一。27 教学目标有不同的类型,也有不同的要求。有些教师的教学之所以效果不佳、达不到课程的要求,最主要的原因是教学目标设计出现了一些问题。比如目标内涵不清楚;目标串位;目标层次要求不清楚;目标空洞无物;目标与内容不协调;目标与学生实际不相符合。28 数学教学目标的类型 数学教学目标的类型可以分为总体目标、具体目标、内容目标和课堂教学目标四类。普通高
13、中数学课程标准明确指出了高中数学课程的总体目标、具体目标和内容目标,这三种目标是宏观目标,是远期目标。至于课堂教学目标,则是一节课的教学目标,是近期目标。远期目标要由课堂教学目标来体现、落实,近期目标受制于远期目标,是实现远期目标的基础。链接1 29 数学课堂教学目标的设计 数学课堂教学目标的设计可以按照知识与技能、过程与方法、情感态度与价值观这3个维度来进行设计。知识与技能 知识与技能目标的内容主要包括3类:一类是数学概念、数学命题(数学定理、性质、公式、法则等)和基本的数学事实结论;一类是数学概念、数学命题和基本的数学事实结论的运用;一类是数学操作性技能(作图等)。知识与技能目标的要求可分
14、为4个层次:了解、理解、掌握和综合运用。在写知识与技能目标时,根据其知识与技能的内容与层次要求来写。比如,“了解什么”、“理解什么”、“掌握什么”、“综合运用什么”。30 过程与方法 过程与方法的内容是:通过数学学习过程,把握数学思想方法、形成数学能力,发展数学思想和数学意识(如统计意识、应用意识、创新意识),提高解决问题能力。描述过程与方法的常见术语有:经历过程、培养能力、领悟数学思想方法、发展意识、学习的问题解决方法;观察、参与、尝试;探索、研究、发现;合作、交流、反思。31 情感态度与价值观 这里的情感是指,在数学活动过程中的比较稳定的情绪体验。数学态度是指,对数学活动、数学对象的心理倾
15、向或立场,表现出兴趣、爱好、喜欢与否、看法立场。数学态度可以演变为数学信念对数学持有的较为稳定的总体看法、观念。数学态度包括对数学学科的态度(数学信念)、对数学的兴趣、对数学具体内容的态度。这一维度目标的内容还包括宏观的价值观和数学审美观。例如,对数学的科学价值、应用价值和文化价值的看法;辩证法的观点;数学的简洁整齐之美、统一和谐之美、抽象概括之美、对称之美、精确之美。刻画情感态度目标的术语有:感受、体会、领悟;形成观点、养成习惯、欣赏之美。32 需要注意的是,情感态度与价值观属于内隐的心理结构,不是显性知识,而是意会知识(缄默知识),无法通过传授直接获得,必须通过学生的过程学习间接获得。所以
16、,教师在进行教学设计时,要以知识技能为基础,以过程方法为途径,在引导学生学习数学的过程中,为学生情感态度与价值观的发展创设适宜的土壤,把知识与技能的学习与情感态度与价值观的培养结合起来,使学生受到潜移默化的影响,最终形成良好的情感态度与价值观。33 案例1 “两条直线的位置关系”的教学目标设计 知识与技能 理解两条直线平行与垂直充要条件的推导、公式及应用。能够根据直线的方程判断两条直线的位置关系。过程与方法 通过探索两条直线平行或垂直的充要条件和推导过程,培养学生观察、归纳的数学逻辑思维能力,并渗透算法的思想。通过灵活运用公式的过程,提高学生类比化归、数形结合的能力。情感态度与价值观 培养学生
17、主动探究知识、合作交流的意识。在体验数学美的过程中激发学生的学习兴趣。34 (2)数学教学内容的内容分析 数学教学内容的内容分析主要包括基本分析、背景分析、结构分析、数学分析和重难点分析。基本分析:学习教材的配套教参,了解教材的编写意图和编写特点,理解课程学习目标,熟悉教学要求。背景分析:了解相关数学知识产生的背景和发展历程以及与其他知识、学科、实际的联系,挖掘其教学价值。35 结构分析:通览教材,熟悉教材内容知识结构图,从整体上把握教材。明确本课内容在相关章节中的地位和作用,弄清楚本节课内容与相关内容之间的上下位关系,明确例题、习题的编排与教学功能。数学分析:研究数学概念、数学命题以及例题和
18、习题的解法,把握其数学本质,尤其是所包含的数学思想方法。例如,数形结合思想、分类讨论思想、化归思想、函数与方程思想、统计思想;配方法、换元法、待定系数法、坐标法、归纳法、演绎法、分析法、综合法和反证法等。重难点分析:先分析教材中的重难点,预估学生易混淆和易出错之处,再根据课堂教学目标要求,确定本堂课的教学重难点。36 案例2 “概率的加法公式”的背景分析和重难点分析 背景分析 为了将一些较为复杂的概率的计算转化为较简单的概率的计算,首先要学会将所考虑的事件作出相应的正确运算。这一节先讲事件的和的意义,然后再讲对于怎样的事件可应用哪一种概率加法公式计算事件的概率。接着研究事件的简单运算:互斥事件
19、的加法运算及相互独立事件的乘法运算,使可以计算事件概率的范围得以扩充。37 重点、难点分析 两个互斥事件的概率加法公式是一个很基本同时又是很重要的公式。之所以说基本,是因为它是一个最简单的概率运算公式,它是任意两个事件的概率加法公式的特例。而其重要性主要在于它是从单个事件向多个事件过渡的起点和中介,它起着承前启后的作用。如果说单个事件的概率问题依靠比例还可以解决的话,那么两个以上的事件的概率问题仅仅依靠比例就很难解决。对于一些较复杂的事件的概率,直接依据概率的定义来进行计算是很不方便的。本章主要包括两个基本公式:互斥事件概率加法公式及对立事件概率和公式,而前者既是教学重点又是教学难点。38(3
20、)数学教学的学生分析 学生是学习的主体,一切教学都要从学生的实际出发,只有对学生情况熟悉,才可能做到有的放矢、对症下药、因材施教,才可能调动学生的积极性。基本情况分析:主要是了解学生学习情况、能力差异、年龄性格特征、兴趣爱好、身体状况、家庭状况等。认知结构分析:主要是了解学生的知识结构、认知水平的准备情况。例如,教师在讲授“指数函数与对数函数互为反函数”时,教师必须检测了解学生对函数概念的认知水平情况,教学才能有效。39学生的认知方式分析:认知方式表现在人的知觉、记忆、思维和解决问题能力等方面的不同风格。比如,场依存性与场独立性:场依存性的学生在认知活动中倾向于以外部参照作为信息加工的依据,容
21、易受周围人们和环境的影响。他们喜欢有人际交流的集体学习情境,对社会学科材料的学习记忆效果较好,较依赖于学习材料的预先组织,需要明确的指导和讲授,喜欢结构严密的教学;场独立性学生则相反,他们在认知活动中倾向于以内部参照作为信息加工的依据,不容易受周围人们和环境的影响。他们的知觉比较稳定,不易为背景改变而改变。善于学习数理学科,能独立思考,对学习材料能进行分析和重组。40沉思型和冲动型:在有几种可能解答的情境中,有些学生倾向于深思熟虑且错误较少,但回答速度较慢。这种认知方式称为沉思型认知方式。另一些学生倾向于很快地作出反应和检验假设,但常常出错。这种认知方式称为冲动型认知方式。辐合型和发散型:辐合
22、型认知方式是指学生在解决问题时,通过收集或综合信息,运用逻辑规律,缩小解答范围,直至找到正确的解答。发散型认知方式是指学生在解决问题时,思维沿着许多不同方向扩展,使观念发散到各个有关方面,最终产生多种答案。整体策略和序列策略:有些学生倾向于把问题看作一个整体,从各个角度对问题进行观察和思考,采用整体策略,有些学生则倾向于把重点放在解决一系列子问题,一步一步呈直线的方式进展,采用序列策略。41 学生认知方式的差异对学生的学习和教师的教学都会产生一定的影响,通过对学生认知方式的分析,可以更好地针对学生的实际情况进行教学。了解学习的一般方法有访谈法、观察法、课堂提问、检查作业、问卷法等。具体方法有:
23、向前任老师、班主任或家长了解通过与学生交往了解根据课堂教学中反馈的信息了解从练习、作业、个别辅导、测验中了解42 二、高中数学教学设计的案例分析 数学教学设计贯穿于整个数学教学活动过程。从数学教学的构成元素来看,有板书设计、教学媒体设计、问题情境设计、问题设计、讨论 设计、小结设计等;从数学教学内容来看,有数学概念设计、数学命题设计、数学习题的设计等;从数学课型来看,有数学新课的教学设计、数学复习课的教学设计、数学活动课的教学设计等。下面分别择其一二而阐述。43 1问题情境设计(1)问题情境的含义 问题情境的核心是通过情境来提出问题,问题是教学设计的核心。此外,在进行问题情境设计时,“情境”与
24、“问题”是一个融合的整体,刻意去寻找热闹的“情境”或人为编造的问题,都会发生偏差。从教学内容看,问题情境大致可以分为:实际背景、数学背景、文化背景等。其中,实际背景主要指现实生活的情境;数学背景主要指数学内部规律、数学内部矛盾等;文化背景主要指数学发生、发展的历史和数学在认识自然改造过程的作用等。从教学环节看,问题情境包括引入新课的情境、过程展开的情境、回顾反思的情境。从呈现方式看,问题情境包括叙述、活动、实物、问题、图形、游戏、欣赏等形式。44 (2)问题情境的设计 问题情境的设计主要是为了引起学生学习的兴趣,激发学生的好奇心,使学生能从情境中提出数学问题,进而为了解决问题而进行积极的学习。
25、因而,问题情境设计的原则是有利于学生思维能力的发展,有利于学生发现问题、提出问题能力的发展,有利于学生创新意识的发展。在设计问题情境时应注意问题情境的适度性、导向性和探究性。45适度性 问题情境应与数学知识相连,与学生认知起点相吻合。有些情境过分追求数学理论的严谨性,追求数学的逻辑起点,而没有与学生已有的数学知识相连,这样的问题情境没有实际内容,难以发挥应有的积极效果。46 案例3 “复数概念”的引入 设计1 在遨游数学王国时,你还记得数的概念发生和发展的过程吗?在历经几次“添加新数”之后,数集已经扩充到实数集。但是,由于负数在实数范围内不能开平方,所以代数运算在实数集内仍不能永远实施。例如,
展开阅读全文