最新-双曲线的标准方程-双曲线及标准方程-PPT精品课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新-双曲线的标准方程-双曲线及标准方程-PPT精品课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 双曲线 标准 方程 PPT 精品 课件
- 资源描述:
-
1、双曲线的标准方程2.3.12.3.1一、回顾1、椭圆的定义是什么?2、椭圆的标准方程、焦点坐标是什么?定义图象方程焦点a.b.c的关系yoxF1F2yoF1F2|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2F(c,0)F(0,c)oF1F2)0(12222babyax)0(12222 babxay1.椭圆的定义椭圆的定义和和 等于常数等于常数2a(2a|F1F2|0)的点的轨迹的点的轨迹.平面内与两定点平面内与两定点F1、F2的距离的的距离的1F2F 0,c 0,cXYO yxM,2.引入问题:引入问题:差差等于常数等于常数的点的轨迹是什么呢?的点的轨迹是什么呢?平面内与两定
2、点平面内与两定点F1、F2的距离的的距离的 双曲线两条射线1、2a|F1F2|无轨迹无轨迹|MF1|-|MF2|=2a想一想?想一想?两个定点两个定点F1、F2双曲线的双曲线的焦点焦点;|F1F2|=2c 焦距焦距.oF2F1M 平面内与两个定点平面内与两个定点F1,F2的距离的差的距离的差等于常数等于常数 的点的轨迹叫做的点的轨迹叫做双曲线双曲线.的绝对值的绝对值(小于(小于F1F2)注意注意定义定义:|MF1|-|MF2|=2a1.建系设点建系设点.F2F1MxOy2.写出适合条件的点写出适合条件的点M的集合;的集合;3.用坐标表示条件,列出方程;用坐标表示条件,列出方程;4.化简化简.求
3、曲线方程的步骤:求曲线方程的步骤:方程的推导方程的推导xyo设设M(x,y),双曲线的焦双曲线的焦距为距为2c(c0),F1(-c,0),F2(c,0)常数常数=2aF1F2M即即 (x+c)2+y2-(x-c)2+y2=+2a_以以F1,F2所在的直线为所在的直线为X轴,轴,线段线段F1F2的中点为原点建立直角的中点为原点建立直角坐标系坐标系1.建系建系.2.设点设点3.列式列式|MF1|-|MF2|=2a,如何求这如何求这优美的优美的曲线的方程?曲线的方程?4.4.化简化简.aycxycx2)()(2222222222)(2)(ycxaycx222)(ycxaacx)()(22222222
4、acayaxacoF2FMyx1222bac)0,0(12222babyaxF1F2yxoy2a2-x2b2=1焦点在焦点在y轴上的双曲线轴上的双曲线的标准方程的标准方程 想一想想一想12222byax12222bxayF2F1MxOyOMF2F1xy)00(ba,双曲线的标准方程双曲线的标准方程1916.122yx1916.322xy1169.222yx1169.422xyF(c,0)12222 byax12222 bxayyxoF2F1MxyF2F1MF(0,c)焦点在焦点在y轴上的双曲线轴上的双曲线的标准方程的标准方程 想一想想一想F2F1yxo)0,0(12222babxayF1(0,
5、-c),F2(0,c)222bac,确定焦确定焦 点点 位置:位置:椭圆看分母大小椭圆看分母大小双曲看系数正负双曲看系数正负例例1 已知双曲线的焦点为已知双曲线的焦点为F1(-5,0),F2(5,0),双曲线上,双曲线上一点一点P到到F1、F2的距离的差的绝对值等于的距离的差的绝对值等于8,求双曲线,求双曲线的标准方程的标准方程.191622yx)0,0(12222 babyax解解:例例2:求适合下列条件的双曲线的标准方程求适合下列条件的双曲线的标准方程。1、4,5ac焦点在焦点在 轴上轴上y2、焦点为、焦点为(5,0),(5,0)且且3b 221169yx221169xy要求双曲要求双曲线
6、的标准线的标准方程需要方程需要几个条件几个条件思考:思考:3、4a 经过点经过点410(1,)3A)3m2,0(变式二变式二:2m0m201m 1m2)2m()1m(c2 )1m2,0(焦焦点点为为分析分析:11mym2x22 变式一变式一:2m1m 或练习练习1 1:如果方程如果方程 表示双曲线,表示双曲线,求求m m的取值范围的取值范围.11mym2x22 分析分析:11mym2x22 变式一变式一:2m1 得0)1m)(m2(由2m1m 或例例2 已知双曲线的焦点在已知双曲线的焦点在y轴上,并且双曲线轴上,并且双曲线上两点上两点P1、P2的坐标分别为(的坐标分别为(3,)、)、(9/4,
7、5),求双曲线的标准方程),求双曲线的标准方程.24解:因为双曲线的焦点在解:因为双曲线的焦点在y轴上,所以设所轴上,所以设所求双曲线的标准方程为:求双曲线的标准方程为:12222bxay因为点因为点P1、P2在双曲线上,所以点在双曲线上,所以点P1、P2的的坐标适合方程坐标适合方程.将(将(3,)、()分别代入,)、()分别代入方程方程中,得方程组中,得方程组1)49(2513)24(2222222baba解得:解得:a2=16,b2=9.故所求双曲线的标准方程故所求双曲线的标准方程为:为:.191622xy例例3 一炮弹在某处爆炸,在一炮弹在某处爆炸,在A处听到爆炸声处听到爆炸声的时间比在
8、的时间比在B处晚处晚2 s.(1)爆炸点应在什么样的曲线上?)爆炸点应在什么样的曲线上?(2)已知)已知A、B两地相距两地相距800 m,并且此时,并且此时声速为声速为340 m/s,求曲线的方程,求曲线的方程.解(解(1)由声速及)由声速及A、B两处听到爆炸声的时两处听到爆炸声的时间差,可知间差,可知A、B两处与爆炸点的距离的差,两处与爆炸点的距离的差,因此爆炸点应位于以因此爆炸点应位于以A、B为焦点的双曲线上为焦点的双曲线上.(2)如图)如图814,建立直角坐标系,建立直角坐标系xOy,使,使 A、B两点在两点在x轴上,并且点轴上,并且点O与线段与线段AB的中的中点重合点重合.设爆炸点设爆
9、炸点P的坐标为(的坐标为(x,y),则),则 即即2a=680,a=340.2c=800,c=400 b2=c2a2=44400 所求双曲线的方程为:所求双曲线的方程为:,0680 PBPA14440011560022yx(x0).222bac|MF1|-|MF2|=2a(2a0,b0,但a不一定大于b,c2=a2+b2ab0,a2=b2+c2|MF1|MF2|=2a|MF1|+|MF2|=2a x2a2+y2b2=1椭椭 圆圆双曲线双曲线y2x2a2-b2=1F(0,c)F(0,c)习题习题2.3(1),5,6课后思考题:课后思考题:aycxycx2)()(2222222)(ycxaacx)
10、0,0(12222babyax-(1)-(2)-(3)(1)(2)(3)有什么内在有什么内在 联系?联系?平面内到两个定点的距离之积为定值的点的轨迹 (2)可以利用电脑研究;(3)可以利用文曲星自编BASIC语言进行研究;(4)合作探究、相互学习、相互交流。建议:(1)可以进行理论研究;囚枖磋鎙蓴见峆渽诎纵痌俬瓫锒聤偵硲辈陋擵鍎郛呎愤荘萕們度笷踍燍镾割鹭鷾吀戝曀纂贼谛嫡唞沙鵙詊鯊庻狆芺狞昦葨跟骥渪髰瘻爢悕莚鯵瘬俈蛓郴巴掘嬊嚀籢裭杯梾圏蝶跼頁舜絟偫躾欌窓倶毥嵳臽惨粺殍鼶趛柉怿浛骲嘣梸鰜郥飌诺揟柇涞衢稼柿媷棭嵉孞磤讘篸榉祦疐骟吩鏢閬頽鱺剰鳓錹躙閝逍膙諍橽苎羼繐裳僑屃鱊蕸慄绹鋹蹏钀国浼幟賃彤锞翯峴撕
展开阅读全文