2020年浙江高考数学复习练习课件:第十三章 数系的扩充与复数的引入.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年浙江高考数学复习练习课件:第十三章 数系的扩充与复数的引入.pptx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 浙江 高考 数学 复习 练习 课件 第十三 扩充 复数 引入 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、考点 复数的概念及运算,A组 自主命题浙江卷题组,五年高考,1.(2018浙江,4,4分)复数 (i为虚数单位)的共轭复数是 ( ) A.1+i B.1-i C.-1+i D.-1-i,答案 B 本题考查复数的有关概念和运算. = =1+i, 的共轭复数为1-i.,思路分析 (1)利用复数的运算法则把 化为a+bi(a,bR)的形式; (2)由共轭复数的定义得出结论.,2.(2019浙江,11,4分)复数z= (i为虚数单位),则|z|= .,答案,解析 本题考查复数的概念及其四则运算,重点考查对概念的理解以及运算能力. z= = = = - i, |z|= = .,3.(2017浙江,12,
2、6分)已知a,bR,(a+bi)2=3+4i(i是虚数单位),则a2+b2= ,ab= .,答案 5;2,解析 本题考查复数的四则运算,复数相等的充要条件,复数模的运算,解二元二次方程组,考 查运算求解能力. 解法一:(a+bi)2=a2-b2+2abi,a,bR, a2+b2=2a2-3=5,ab=2. 解法二:由解法一知ab=2, 又|(a+bi)2|=|3+4i|=5,a2+b2=5.,4.(2016浙江自选,“复数与导数”模块,03(1),5分)已知i为虚数单位.若复数z满足(z+i)2=2i,求复数z.,解析 设复数z=a+bi,a,bR,由题意得a2-(b+1)2+2a(b+1)i
3、=2i, 解得 或 z=1或z=-1-2i.,评析 本题考查复数的运算,正确将(z+i)2=2i变形是求解的关键.,5.(2015浙江自选,“复数与导数”模块,03(1),5分)已知i是虚数单位,a,bR,复数z=1+ai满足z2+ z=1+bi,求a2+b2的值.,解析 由题意得(2-a2)+3ai=1+bi, 解得a2=1,b=3a, 故a2+b2=10.,考点 复数的概念及运算,B组 统一命题、省(区、市)卷题组,1.(2019课标全国文,2,5分)设z=i(2+i),则 = ( ) A.1+2i B.-1+2i C.1-2i D.-1-2i,答案 D 本题主要考查复数的有关概念及复数的
4、运算;考查学生的运算求解能力;考查数学 运算的核心素养. z=i(2+i)=2i+i2=-1+2i, =-1-2i,故选D.,解题关键 正确理解共轭复数的概念是求解的关键.,2.(2019课标全国文,2,5分)若z(1+i)=2i,则z= ( ) A.-1-i B.-1+i C.1-i D.1+i,答案 D 本题考查复数的四则运算,考查学生的运算求解能力,考查的核心素养是数学运算. 由题意得z= = =1+i,故选D.,解题关键 牢记i2=-1.分母实数化是求解本题的关键.,3.(2019北京文,2,5分)已知复数z=2+i,则z = ( ) A. B. C.3 D.5,答案 D 本题主要考查
5、复数的运算,共轭复数的概念,考查学生运算求解的能力,考查的核心 素养是数学运算. z=2+i, =2-i,z =(2+i)(2-i)=4+1=5,故选D.,4.(2019课标全国文,1,5分)设z= ,则|z|= ( ) A.2 B. C. D.1,答案 C 本题考查复数的四则运算;考查了运算求解能力;考查的核心素养为数学运算. z= = = = = - i, |z|= = ,故选C.,易错警示 易将i2误算为1,导致计算出错.,5.(2019课标全国理,2,5分)设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则 ( ) A.(x+1)2+y2=1 B.(x-1)2+y2=1
6、C.x2+(y-1)2=1 D.x2+(y+1)2=1,答案 C 本题主要考查复数的概念及几何意义;考查学生的运算求解能力,以及数形结合思 想;考查的核心素养是数学运算. 设复数z与i分别表示复平面内的点Z与点P,则P(0,1),且|z-i|表示复平面内点Z与点P之间的距离, 所以点Z(x,y)到点P(0,1)的距离为定值1,所以Z的轨迹是以(0,1)为圆心,1为半径的圆,故选C.,6.(2019课标全国理,2,5分)设z=-3+2i,则在复平面内 对应的点位于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限,答案 C 本题考查了复数的概念与运算;考查的核心素养为数学运算. z
7、=-3+2i, =-3-2i, 在复平面内, 对应的点为(-3,-2),此点在第三象限.,7.(2018课标全国理,1,5分) = ( ) A.- - i B.- + i C.- - i D.- + i,答案 D 本题主要考查复数的四则运算. = = =- + i,故选D.,8.(2018课标全国文,2,5分)设z= +2i,则|z|= ( ) A.0 B. C.1 D.,答案 C z= +2i= +2i= +2i=i, |z|=|i|=1,故选C.,9.(2018北京理,2,5分)在复平面内,复数 的共轭复数对应的点位于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限,答案
8、D 本题主要考查复数的概念、运算和几何意义. = = + i,其共轭复数为 - i,又 - i在复平面内对应的点 在第四象 限,故选D.,10.(2018课标全国理,2,5分)(1+i)(2-i)= ( ) A.-3-i B.-3+i C.3-i D.3+i,答案 D 本题考查复数的运算. (1+i)(2-i)=2-i+2i-i2=3+i,故选D.,11.(2017课标全国文,3,5分)下列各式的运算结果为纯虚数的是 ( ) A.i(1+i)2 B.i2(1-i) C.(1+i)2 D.i(1+i),答案 C 本题考查复数的运算和纯虚数的定义. A.i(1+i)2=i2i=-2; B.i2(1
9、-i)=-(1-i)=-1+i; C.(1+i)2=2i; D.i(1+i)=-1+i,故选C.,12.(2017北京文,2,5分)若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围 是 ( ) A.(-,1) B.(-,-1) C.(1,+) D.(-1,+),答案 B 本题考查复数的运算. 复数(1-i)(a+i)=a+1+(1-a)i在复平面内对应的点在第二象限, a-1.故选B.,13.(2017课标全国理,3,5分)设有下面四个命题: p1:若复数z满足 R,则zR; p2:若复数z满足z2R,则zR; p3:若复数z1,z2满足z1z2R,则z1= ; p4
10、:若复数zR,则 R. 其中的真命题为 ( ) A.p1,p3 B.p1,p4 C.p2,p3 D.p2,p4,答案 B 本题考查复数与共轭复数的概念、复数的运算以及命题真假的判断,考查学生的 逻辑思维能力和运算求解能力. 解法一(特值法):取z=i,则z2=-1R,但zR,故命题p2不正确;取z1=i,z2=2i,则 =-2i,z1z2=-2R,但z1 ,故命题p3不正确,结合选项可知选B. 解法二(直接法):对于命题p1,设z=a+bi(a,bR),由 = = R,得b=0,则zR成立,故命 题p1正确;对于命题p2,设z=a+bi(a,bR),由z2=(a2-b2)+2abiR,得ab=
11、0,则a=0或b=0,复数z可能为 实数或纯虚数,故命题p2错误;对于命题p3,设z1=a+bi(a,bR),z2=c+di(c,dR),由z1z2=(ac-bd)+ (ad+bc)iR,得ad+bc=0,不一定有z1= ,故命题p3错误;对于命题p4,设z=a+bi(a,bR),则由zR, 得b=0,所以 =aR成立,故命题p4正确.故选B.,14.(2017山东理,2,5分)已知aR,i是虚数单位.若z=a+ i,z =4,则a= ( ) A.1或-1 B. 或- C.- D.,答案 A 本题主要考查复数的概念及运算. z=a+ i, =a- i,又z =4,(a+ i)(a- i)=4,
12、a2+3=4,a2=1,a=1.故选A.,15.(2016课标全国,2,5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|= ( ) A.1 B. C. D.2,答案 B x,yR,(1+i)x=1+yi,x+xi=1+yi, |x+yi|=|1+i|= = .故选B.,评析 本题考查复数相等的条件,属容易题.,16.(2016课标全国,2,5分)若z=1+2i,则 = ( ) A.1 B.-1 C.i D.-i,答案 C z =(1+2i)(1-2i)=5, = =i,故选C.,17.(2016课标全国,1,5分)已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则
13、实数m的取 值范围是 ( ) A.(-3,1) B.(-1,3) C.(1,+) D.(-,-3),答案 A 由已知可得 -3m1.故选A.,18.(2016山东,1,5分)若复数z满足2z+ =3-2i,其中i为虚数单位,则z= ( ) A.1+2i B.1-2i C.-1+2i D.-1-2i,答案 B 设z=a+bi(a、bR),则2z+ =2(a+bi)+a-bi=3a+bi=3-2i,a=1,b=-2,z=1-2i,故选B.,19.(2015课标,2,5分)若a为实数,且(2+ai)(a-2i)=-4i, 则a= ( ) A.-1 B.0 C.1 D.2,答案 B (2+ai)(a-
14、2i)=-4i4a+(a2-4)i=-4i, 解得a=0.,20.(2015安徽,1,5分)设i是虚数单位,则复数 在复平面内所对应的点位于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限,答案 B = =-1+i,复数 在复平面内所对应的点是(-1,1),它位于第二象限.,21.(2015湖北,1,5分)i为虚数单位,i607的 为 ( ) A.i B.-i C.1 D.-1,答案 A i607=i4151+3=(i4)151i3=-i, i607的共轭复数为i.,22.(2015湖南,1,5分)已知 =1+i(i为虚数单位),则复 数z= ( ) A.1+i B.1-i C
15、.-1+i D.-1-i,答案 D z= = = =-1-i.,23.(2015山东,2,5分)若复数z满足 =i,其中i为虚数单位,则z= ( ) A.1-i B.1+i C.-1-i D.-1+i,答案 A =i(1-i)=1+i,则z=1-i.,24.(2015四川,2,5分)设i是虚数单位,则复数i3- = ( ) A.-i B.-3i C.i D.3i,答案 C i3- =-i+2i=i.故选C.,25.(2015福建,1,5分)若集合A=i,i2,i3,i4(i是虚数单位),B=1,-1,则AB等于 ( ) A.-1 B.1 C.1,-1 D.,答案 C A=i,-1,-i,1,B
展开阅读全文