7.2 离散型随机变量及其分布列 (专项训练)-2022新人教A版(2019)《高中数学》选择性必修第三册.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《7.2 离散型随机变量及其分布列 (专项训练)-2022新人教A版(2019)《高中数学》选择性必修第三册.docx》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 7.2 离散型随机变量及其分布列 专项训练_2022新人教A版2019高中数学选择性必修第三册 离散 随机变量 及其 分布 专项 训练 _2022 新人 2019 选择性 必修 第三 下载 _选择性必修 第三册_人教A版(2019)_数学_高中
- 资源描述:
-
1、20202021学年高二数学下学期 7.2离散型随机变量及其分布列专项训练一、单选题(共12题;共60分)1已知随机变量X的分布列表如下表,且随机变量,则Y的期望是( )X-101mABCD2设,随机变量的分布列是则当在内增大时A减小,减小B减小,增大C增大,减小D增大,增大3已知离散型随机变量的分布列如下:由此可以得到期望与方差分别为A,B,C,D,4若是离散型随机变量,且,已知,则的值为()ABC3D5记为两个离散型随机变量,则下列结论不正确的是( )ABCD6已知随机变量的分布列表,又随机变量,则的均值是01ABCD37抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差
2、为,则“4”表示试验的结果为 ()A第一枚为5点,第二枚为1点B第一枚大于4点,第二枚也大于4点C第一枚为6点,第二枚为1点D第一枚为4点,第二枚为1点8设随机变量的分布列为,则,的值分别是( )A0和1B和C和D和9如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=( )ABCD10下列随机变量中不是离散型随机变量的是.A掷5次硬币正面向上的次数MB某人每天早晨在某公共汽车站等某一路车的时间TC从标有数字1至4的4个小球中任取2个小球,这2个小球上所标的数字之和YD将一个骰子掷3次,3次出现的点数
3、之和X11已知是离散型随机变量,则ABCD12已知随机变量满足,若,则A , B , C , D , 二、填空题(共4题;共20分)13下面给出三个变量:(1)2013年地球上发生地震的次数.(2)在一段时间间隔内某种放射性物质发生的粒子数.(3)在一段时间间隔内某路口通过的宝马车的辆数X.其中是随机变量的是_.14已知的分布列01且,则_.15某同学参加投篮训练,已知每投篮一次,投进球的概率均为记该同学投篮4次,进球个数为,若,则_16下列随机变量中不是离散型随机变量的是_(填序号)某宾馆每天入住的旅客数量是;某水文站观测到一天中珠江的水位;西部影视城一日接待游客的数量;阅海大桥一天经过的车
4、辆数是.三、解答题(共4题;共20分)17在全球抗击新冠肺炎疫情期间,我国医疗物资生产企业加班加点生产口罩、防护服、消毒水等防疫物品,保障抗疫一线医疗物资供应,在国际社会上赢得一片赞誉我国某口罩生产厂商在加大生产的同时,狠抓质量管理,不定时抽查口罩质量,该厂质检人员从某日所生产的口罩中随机抽取了100个,将其质量指标值分成以下五组:,得到如下频率分布直方图(1)规定:口罩的质量指标值越高,说明该口罩质量越好,其中质量指标值低于130的为二级口罩,质量指标值不低于130的为一级口罩现从样本口罩中利用分层抽样的方法随机抽取8个口罩,再从中抽取3个,求恰好取到一级口罩个数为的概率;(2)在2020年
5、“五一”劳动节前,甲、乙两人计划同时在该型号口罩的某网络购物平台上分别参加A、B两店各一个订单“秒杀”抢购,其中每个订单由个该型号口罩构成假定甲、乙两人在A、B两店订单“秒杀”成功的概率分别为,记甲、乙两人抢购成功的订单总数量、口罩总数量分别为,求的分布列及数学期望;求当的数学期望取最大值时正整数的值18武汉出现的新型冠状病毒是一种可以通过飞沫传播的变异病毒,某药物研究所为筛查该新型冠状病毒,需要检验血液是否为阳性,现有份血液样本,每份样本取到的可能性均等,有以下两种检验方式:逐份检验,则需要检验n次;混合检验,将其中份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份血液全为阴性,因此
6、这k份血液样本检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份血液再逐份检验,此时这k份血液的检验次数总共为次.假设在接受检验的血液样本中,每份样本的检验结果是阴性还是阳性都是独立的,且每份样本是阳性结果的概率为.(1)假设有5份血液样本,其中只有2份为阳性,若采取逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;(2)现取其中份血液样本,记采用逐份检验方式,样本需要检验的次数为,采用混合检验方式,样本需要检验的总次数为.(i)试运用概率统计知识,若,试求P关于k的函数关系式;(ii)若,采用混合检验方式可以使得这k份血液样本需要检验的总次数
7、的期望值比逐份检验的总次数期望值更少,求k的最大值.参考数据:,19某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.维修次数23456甲设备5103050乙设备05151515(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为和,求和的分布列;(2)若以数学期望为决策依据,希望设
展开阅读全文
链接地址:https://www.163wenku.com/p-3588487.html