7.4 二项分布与超几何分布 学案-2022新人教A版(2019)《高中数学》选择性必修第三册.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《7.4 二项分布与超几何分布 学案-2022新人教A版(2019)《高中数学》选择性必修第三册.docx》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 7.4 二项分布与超几何分布 学案_2022新人教A版2019高中数学选择性必修第三册 二项分布 几何 分布 _2022 新人 2019 选择性 必修 第三 下载 _选择性必修 第三册_人教A版(2019)_数学_高中
- 资源描述:
-
1、第七章 随机变量及其分布7.4二项分布与超几何分布知识梳理知识点一n重伯努利试验及其特征1n重伯努利试验的概念将一个伯努利试验独立地_进行n次所组成的随机试验称为n重伯努利试验2n重伯努利试验的共同特征(1)同一个伯努利试验_做n次(2)各次试验的结果_知识点二:二项分布一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0p1),用X表示事件A发生的次数,则X的分布列为P(Xk)_,k0,1,2,n.称随机变量X服从二项分布,记作_知识点三二项分布的均值与方差二项分布的均值与方差(1)二项分布的均值:在n次独立重复试验中,若XB(n,p),则_(2) 二项分布的方差:若离散型随机变
2、量X从二项分布,即XB(n,p),则D(X)=np(1-p).知识点四超几何分布定义:一般地,假设一批产品共有N件,其中有M件次品,从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为(_)其中n,N,MN*,MN,nN,mmax0,nNM,rminn,M如果随机变量X的分布列具有上式的形式,那么称随机变量X服从_超几何分布的均值设随机变量X服从超几何分布,则X可以解释为从包含M件次品的N件产品中,不放回地随机抽取n件产品中的次品数.令p=MN , 则p是N件产品的次品率,而是抽取的 n件产品的次品率,则E( Xn )=p,即_课后小练12020年第七次全国人口
3、普查摸底工作从10月11日开始,10月31日结束从11月1日开始进入普查的正式登记阶段普查员进入每个住户逐人逐项登记普查信息,这期间还将随机抽取的住户填报普查长表,调查更为详细的人口结构信息整个登记工作持续到12月10日结束某社区对随机抽取的住户普查长表信息情况汇总,并按照住户人均年收入情况绘制出如下的频率分布直方图(假设该社区内住户人均年收人均在0到12万之间):(1)若抽取的住户中,家庭人均年收人在万元的恰好有32户,则该社区共有住户约多少户(2)若从抽取的住户中人均年收人不高于8万元的住户中按照分层抽样的方法抽取10户,再从这10户中随机抽取4户对其住房和医疗保健情况进行调查,用X表示抽
4、取的4户中家庭收入不少于6万元的住户数,求随机变量X的分布列与数学期望2核酸检测是诊断新冠肺炎的重要依据,首先取病人的唾液或咽拭子的样本,再提取唾液或咽拭子样本里的遗传物质,如果有病毒,样本检测会呈现阳性,否则为阴性.多个样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验,混合样本中只要有病毒,则混合样本化验结果就会呈阳性,若混合样本呈阳性,则将该组中各个样本再逐个化验:若混合样本呈阴性,则该组各个样本均为阴性.根据统计发现,疑似病例核酸检测呈阳性的概率为.现用两种方案对4例疑似病例进行核酸检测.(1)方案一:4例逐个化验,设检测结果呈阳性的人数为X,求X的概率分布列;(2)方案二:
5、4例平均分成两组化验,设需要检测的次数为Y,求Y的概率分布列.3某企业对生产设备进行优化升级,升级后的设备控制系统由个相同的元件组成,每个元件正常工作的概率均为,各元件之间相互独立当控制系统有不少于个元件正常工作时,设备正常运行,否则设备停止运行,记设备正常运行的概率为(例如:表示控制系统由3个元件组成时设备正常运行的概率;表示控制系统由5个元件组成时设备正常运行的概率)(1)若每个元件正常工作的概率(i)当时,求控制系统中正常工作的元件个数的分布列和期望;(ii)计算(2)已知设备升级前,单位时间的产量为件,每件产品的利润为1元,设备升级后,在正常运行状态下,单位时间的产量是原来的4倍,且出
6、现了髙端产品,每件产品成为高端产品的概率为,每件髙端产品的利润是2元请用表示出设备升级后单位时间内的利润(单位:元),在确保控制系统中元件总数为奇数的前提下,分析该设备能否通过增加控制系统中元件的个数来提高利润4讲课中国行动(20192030年)包括15个专项行动,其中全民健身行动提出鼓励公众每周进行3次以上、每次30分钟以上中等强度运动,或者累计150分钟中等强度75分钟高强度身体活动.日常生活中要尽量多动,达到每天6千步10千步的身体活动量.某高校从该校教职工中随机抽取了若干名,统计他们的人均步行数(均在2千步14千步之间),得到的数据如下表:日均步行数/千步人数1224249频率0.08
7、0.160.40.160.06(1)求,的值;(2)“每天运动一小时,健康工作五十年”,学校为了鼓励教职工积极参与锻炼,决定对日均步行数不低于千步的教职工进行奖励,为了使全校30%的教职工得到奖励,试估计的值;(3)在第(2)问的条件下,以频率作为概率,从该校得到奖励的教职工中随机收取3人,设这3人中日均步行数不低于10千步的人数为,求的分布列和数学期望.5为了解企业职工对工会工作满意度情况之间的关系,某企业工会按性别采用分层抽样的方法,从全体企业职工中抽取容量为200的样本进行调查被抽中的职工分别对工会工作进行评分,满分为100分,调查结果显示:最低分为40分,最高分为90分随后,企业工会将
展开阅读全文
链接地址:https://www.163wenku.com/p-3588475.html