6.2.1排列ppt课件-2022新人教A版(2019)《高中数学》选择性必修第三册.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《6.2.1排列ppt课件-2022新人教A版(2019)《高中数学》选择性必修第三册.ppt》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 6.2 排列 ppt 课件 _2022 新人 2019 选择性 必修 第三 下载 _选择性必修 第三册_人教A版(2019)_数学_高中
- 资源描述:
-
1、6.2.1 排 列 高二数学选择性必修 第三册 第六章 计数原理学习目标1.理解排列的概念;2.能正确写出一些简单问题的所有排列.3.核心素养:直观想象、数学运算。1.分类加法计数原理:完成一件事,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法 在第n类方案中有mn种不同的方法.那么完成这件事共有 种不同的方法.12nNmmm2.分步乘法计数原理:完成一件事,需要分成n个步骤,做 第 1 步有 m1种不同的方法,做第2步有m2种不同的方法,做 第 n 步 有mn种不同的方法.那 么 完 成这件 事 共有 种不同的方法.12nNmmm一、回顾旧知1.问题1:从
2、甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动,有多少种不同的选法?二、探究新知:上午 下午 相应的排法甲乙丙乙丙甲丙甲乙甲乙甲丙乙甲乙丙丙甲丙乙分析:要完成的一件事情是“选出2名同学参加活动,1名参上午的活动,另1名参加下午的活动”,可以分步完成.图6.2-1解:从3名同学中选出2名同学参加活动,1名上午,另1名下午,可以分两个步骤完成:第1步,确定参加上午活动的同学,从3人中任选1人,有3种选法:第2步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从剩下的2人去选,有2种选法.根据分步乘法计数原理,不同选法的种数
3、N=32=6.6种选法如图6.2-1所示2.若把上面问题中被取的对象叫做元素,于是问题就可以叙述为:从3个不同的元素a,b,c中任取2个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?不同的排列:ab,ac,ba,bc,ca,cb不同的排列方法种数:N=32=6.3.问题2:从1,2,3,4这4个数中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?1234443322444333111244431112224333111222 叙述为:从4个不同的元素a,b,c,d 中任取3个,然后按照一定的 顺序排成一列 共有多少种不同的排列方法?abc,abd,acb,acd,adb,
4、adc;bac,bad,bca,bcd,bda,bdc;cab,cad,cba,cbd,cda,cdb;dab,dac,dba,dbc,dca,dcb.有此可写出所有的三位数:123,124,132,134,142,143;213,214,231,234,241,243,312,314,321,324,341,342;412,413,421,423,431,432.百位十位个位不同的排列方法种数:N=432=24.问题1 从甲、乙、丙3名同学中选出2名参加某天 的 一项活动,其中1名参加上午的活动,1名参加下午的活动,有哪些不同的排法?实质是:从3个不同的元素中,任取2个,按一定的顺序排成一列
5、,有哪些不同的排法.问题2 从1,2,3,4这4个数中,每次取出3个排成一个三位数,共 可 得到多少个不同的三位数?实质是:从4个不同的元素中,任取3个,按照一定的顺序排成一列,写出所有不同的排法.一般地说,从n个不同的元素中,任取m(mn)个元素,按照一定的顺序排成一列,叫做从n个不 同的元素中取出m个元素的一个排列.4、排列:从n个不同元素中取出m(m n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。注意:1).元素不能重复。2).“按一定顺序”就是与位置有关,这是判断一个问题是否是排列问题的关键。3).两个排列相同,当且仅当这两个排列中的元素完全相同,而且
6、元素的排列顺序也完全相同。4).mn时的排列叫选排列,mn时的排列叫全排列。5).为了使写出的所有排列情况既不重复也不遗漏,最好采用“树形图”。(有序性)(互异性)1.判断下列问题是排列问题吗?(1)从1,2,3,4四个数字中,任选两个做加法,其不同结果有多少种?(2)从1,2,3三个数字中,任选两个做除法,其不同结果有多少种?(3)从1到10十个自然数中任取两个组成点的坐标,可得多少个不同的点的坐标?(4)平面上有5个点,任意三点不共线,这五点最多可确定多少条射线?可确定多少条直线?(5)10个学生排队照相,则不同的站法有多少种?(从中归纳这几类问题的区别)是排列不是排列是排列是排列不是排列
展开阅读全文