7.2 离散型随机变量及其分布列 讲义-2022新人教A版(2019)《高中数学》选择性必修第三册.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《7.2 离散型随机变量及其分布列 讲义-2022新人教A版(2019)《高中数学》选择性必修第三册.docx》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 7.2 离散型随机变量及其分布列 讲义_2022新人教A版2019高中数学选择性必修第三册 离散 随机变量 及其 分布 讲义 _2022 新人 2019 选择性 必修 第三 下载 _选择性必修 第三册_人教A版(2019)_数学_高中
- 资源描述:
-
1、第七章 随机变量及其分布7.2离散型随机变量及其分布列知识梳理知识点一随机变量的概念、表示及特征概念:一般地,对于随机试验样本空间中的每个样本点都有唯一的实数X()与之对应,我们称X为随机变量表示:用大写英文字母表示随机变量,如X,Y,Z;用小写英文字母表示随机变量的取值,如x,y,z.特征:随机试验中,每个样本点都有唯一的一个实数与之对应,随机变量有如下特征:(1)取值依赖于样本点(2)所有可能取值是明确的知识点二 随机变量与函数有什么联系和区别?共同点:随机变量和函数都是一种映射区别: 随机变量把试验的结果映为实数,函数把实数映为实数联系:试验结果的范围相当于函数的定义域,随机变量的取值范
2、围相当与函数的值域;注意:所有随机变量的取值范围的集合叫做随机变量的值域.知识点三随机变量的分类:1)离散型随机变量:对于随机变量可能取的值,如果可以一一列出,这样的随机变量叫做离散型随机变量2)连续型随机变量: 随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量.知识点四离散型随机变量的分布列及其性质1定义:一般地,设离散型随机变量X的可能取值为x1,x2,xn,我们称X取每一个值xi的概率P(Xxi)pi,i1,2,3,n为X的概率分布列,简称分布列2分布列的性质(1)pi0,i1,2,n.(2)p1p2pn1.题型探究例1学校趣味运动会上增加了一项射击比赛,比赛规则如下:
3、向A、B两个靶子进行射击,先向A靶射击一次,命中得1分,没有命中得0分;再向B靶连续射击两次,如果只命中一次得2分,一次也没有命中得0分,如果连续命中两次则得5分甲同学准备参赛,经过一定的训练,甲同学的射击水平显著提高,目前的水平是:向A靶射击,命中的概率是;向B靶射击,命中的概率为假设甲同学每次射击结果相互独立(1)求甲同学恰好命中一次的概率;(2)求甲同学获得的总分X的分布列及数学期望【答案】(1);(2)分布列见解析;期望为【详解】(1)记“甲同学恰好命中一次”为事件C,“甲射击命中A靶”为事件D,“甲第一次射击B靶命中”为事件E,“甲第二次射击B靶命中”为事件F,由题意可知,由于,(2
4、)随机变量X的可能取值为:0,1,2,3,5,6X012356P例2为了响应政府“节能减排”的号召,某知名品牌汽车厂家决定生产一款纯电动汽车.生产前,厂家进行了人们对纯电动汽车接受程度的调查.在2060岁的人群中随机抽取了100人,调查数据的频率分布直方图和接受纯电动汽车的人数与年龄的统计结果如图所示:年龄接受的人数(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过的前提下,认为以岁为分界点的不同年龄人群对纯电动汽车的接受程度有差异?岁以下岁及岁以上总计接受不接受总计(2)若以岁为分界点,从不接受“纯电动汽车”的人群中,按分层抽样的方法抽取人调查不接受“纯电动汽车”的原因,现从这人中
5、随机抽取人.记抽到岁以下的人数为,求随机变量的分布列及数学期望.0.1000.0500.0100.0012.7063.8416.63510.828附:【答案】(1)联表答案见解析,能在犯错误的概率不超过的前提下,认为以岁为分界点的不同人群对“纯电动汽车”的接受程度有差异;(2)分布列答案见解析,数学期望为.【详解】解:(1)由题可得联表如下:岁以下岁及岁以上总计接受354580不接受15520总计5050100.能在犯错误的概率不超过的前提下,认为以岁为分界点的不同人群对“纯电动汽车”的接受程度有差异.(2)由题意可知,抽取的人中岁以下的有人,岁及岁以上的有人,所以的可能取值有,.所以随机变量
6、的分布列为:.例3某单位招考工作人员,须参加初试和复试,初试通过后组织考生参加复试,共5000人参加复试,复试共三道题,第一题考生答对得3分,答错得0分,后两题考生每答对一道题得5分,答错得0分,答完三道题后的得分之和为考生的复试成绩.(1)通过分析可以认为考生初试成绩服从正态分布,其中,试估计初试成绩不低于90分的人数;(2)已知某考生已通过初试,他在复试中第一题答对的概率为,后两题答对的概率均为,且每道题回答正确与否互不影响.记该考生的复试试成绩为,求的分布列及数学期望.附:若随机变量服从正态分布,则,【答案】(1)114人;(2)分布列见解析,.【详解】(1)学生笔试成绩服从正态分布,其
7、中,估计笔试成绩不低于90分的人数为人(2)的取值分别为0,3,5,8,10,13,则的分布为故的分布列为:03581013例4某篮球职业联赛分为常规赛和季后赛两个阶段.常规赛采用循环赛,分主场比赛和客场比赛两种,积分高的球队进入季后赛;季后赛采用五局三胜制进行淘汰赛,最终决出总冠军.(“局胜”制是指先胜局者获得比赛胜利,比赛结束).下表是甲队在常规赛场比赛中的比赛结果记录表.季度比赛次数主场次数获胜次数主场获胜次数1季度231316112季度27112183季度30162313(1)根据表中信息,能否在犯错误概率不超过的前提下认为“主客场”与“胜负”之间有关?(2)已知甲队和乙队在季后赛首轮
8、比赛中相遇,假设每局比赛结果相互独立,以甲队常规赛场比赛获胜的频率估计甲队在季后赛每局比赛获胜的概率,记为本轮比赛结束时甲队和乙队所进行的比赛的局数,求的分布列及甲队获得这轮比赛胜利的概率.附:,P(K2k)0.1000.0500.025k2.7063.8415.024【答案】(1)不能在犯错误概率不超过的前提下认为“主客场”与“比赛胜负”之间有关;(2)分布列答案见解析,概率为.【详解】解:(1)根据表格信息列出22列联表如下甲队胜甲队负合计主场32840客场281240合计602080所以不能在犯错误概率不超过0.100的前提下认为“主客场”与“比赛胜负”之间有关.(2)依题意得甲队每局比
9、赛获胜的概率估计值为,X的所有可能取值为,所以X的分布列为X345P“甲队获得这轮比赛胜利”的概率为.例5抖音是一款音乐创意短视频社交软件,是一个专注年轻人的15秒音乐短视频社区,用户可以通过这款软件选择歌曲,拍摄15秒的音乐短视频,形成自己的作品2018年6月首批25家央企集体入驻抖音,一调研员在某单位进行刷抖音时间的调查,若该单位甲、乙、丙三个部门的员工人数分别为24,16,16现采用分层抽样的方法从中抽取7人(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有3人是抖音迷,4人为非抖音迷,现从这7人中随机抽取3人做进一步的详细登记用表示抽取的3人中是抖音迷的员工人数
10、,求随机变量的分布列与数学期望;设为事件“抽取的3人中,既有是抖音迷的员工,也有非抖音迷的员工,求事件发生的概率【答案】(1)应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人;(2)分布列详见解析,数学期望为;(3)【详解】(1)由已知,甲、乙、丙三个部门的员工人数之比为由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人(2)随机变量X的所有可能取值为0,1,2,3,所以,随机变量的分布列为0123随机变量X的数学期望设事件为“抽取的3人中,是抖音迷的员工有1人,非抖音迷的员工有2人”;事件为“抽取的3人中,是抖音迷的员工有2人,非抖音迷的员工
11、有1人”,则,且与互斥,由()知,故,所以事件发生的概率为课后小练1.甲、乙是两名射击运动员,根据历史统计数据,甲一次射击命中 10 、 9 、 8 环的概率分别为 25 、 25 、 15 ,乙一次射击命中 10 、 9 环的概率分别为 16 、 56 一轮射击中,甲、乙各射击一次甲、乙射击相互独立,每次射击也互不影响 (1)在一轮射击中,求甲命中的环数不高于乙命中的环数的概率; (2)记一轮射击中,甲、乙命中的环数之和为 X ,求 X 的分布列; (3)进行三轮射击,求甲、乙命中的环数之和不低于52环的概率 2.受新冠肺炎疫情影响,本学期同学们在家上网课时间达三个多月,电脑屏幕代替了黑板,
展开阅读全文
链接地址:https://www.163wenku.com/p-3588364.html