6.1 分类加法计数原理与分步乘法计数原理 学案-2022新人教A版(2019)《高中数学》选择性必修第三册.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《6.1 分类加法计数原理与分步乘法计数原理 学案-2022新人教A版(2019)《高中数学》选择性必修第三册.docx》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 6.1 分类加法计数原理与分步乘法计数原理 学案_2022新人教A版2019高中数学选择性必修第三册 分类 加法 计数 原理 分步 乘法 _2022 新人 2019 选择性 必修 第三 下载 _选择性必修 第三册_人教A版(2019)_数学_高中
- 资源描述:
-
1、第六章计数原理6.1分类加法计数原理与分步乘法计数原理知识解读考点一分类加法计数原理完成一件事有两类方案在第1类方案中有m种不同的方法在第2类方案中有n种不同的方法,那么完成这件事共有N_种不同的方法考点二 使用分类加法计数原理计数的两个条件(1)根据问题的特点确定一个适合它的_,在这个标准下进行分类.(2)完成这件事的任何一种方法_属于某一类,分别属于不同类的两种方法是不同的方法,满足这些条件,才可以用_考点三分步乘法计数原理完成一件事需要两个步骤做第1步有m种不同的方法做第2步有n种不同的方法,那么完成这件事共有N_种不同的方法考点四 分类加法计数原理与分步乘法计数原理的联系与区别联系:是
2、涉及做一件事的_的种数问题.区别:分类加法计数原理针对的是“_”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“_”问题,各个步骤中的方法_,只有各个步骤都完成才算做完这件事.考点四两个计数原理的应用用两个计数原理解决计数问题时,最重要的是在开始计算之前要仔细分析两点:(1)分类要做到“_”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数(2)分步要做到“_”,即完成了所有步骤,恰好完成任务分类后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数知识归纳基本形式一般形式区别分类加法计数原理完成一件事有
3、两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有Nmn种不同的方法完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第n类方案中有mn种不同的方法,那么完成这件事共有Nm1m2mn种不同的方法分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法种数它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任何一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法
4、,做第2步有n种不同的方法,那么完成这件事共有Nmn种不同的方法完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事共有Nm1m2mn种不同的方法课后小练1用0,1,9这十个数字可以组成多少个(1)三位整数?(2)无重复数字的三位整数?(3)小于500的无重复数字的三位整数?2数学上的“四色问题”,是指“任何一张地图只用四种颜色就能使具有公共边界的国家着上不同的颜色”,现有五种颜色供选择,涂色我国西部五省,要求每省涂一色,相邻各省不同色,有多少种涂色方法3用5种不同的颜色给图中的四个区域涂色,每个区域涂一种颜色,若要求相邻(
5、有公共边)的区域不同色,则共有多少种不同的涂色方法?12344男运动员名,女运动员名,其中男女队长各人,选派人外出比赛,在下列情形中各有多少种选派方法.(1)任选人(2)男运动员名,女运动员名(3)至少有名女运动员(4)队长至少有一人参加(5)既要有队长,又要有女运动员5一次数学考试有4道填空题,共20分,每道题完全答对得5分,否则得0分在试卷命题时,设计第一道题使考生都能完全答对,后三道题能得出正确答案的概率分别为、,且每题答对与否相互独立(1)当时,求考生填空题得满分的概率;(2)若考生填空题得10分与得15分的概率相等,求的值6如图,将四棱锥S-ABCD的每一个顶点涂上一种颜色,并使同一
展开阅读全文
链接地址:https://www.163wenku.com/p-3588346.html