7.4.2超几何分布 ppt课件 -2022新人教A版(2019)《高中数学》选择性必修第三册.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《7.4.2超几何分布 ppt课件 -2022新人教A版(2019)《高中数学》选择性必修第三册.pptx》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 7.4.2 超几何分布 ppt课件 _2022新人教A版2019高中数学选择性必修第三册 7.4 几何 分布 ppt 课件 _2022 新人 2019 选择性 必修 第三 下载 _选择性必修 第三册_人教A版(2019)_数学_高中
- 资源描述:
-
1、已知已知100件产品中有件产品中有8件次品,分别采用有放回和不放回的件次品,分别采用有放回和不放回的方式随机抽取方式随机抽取4件设抽取的件设抽取的4件产品中次品数为件产品中次品数为X,求随机变,求随机变量量X的分布列的分布列.问问 题题已知已知100件产品中有件产品中有8件次品,分别采用有放回和不放回的件次品,分别采用有放回和不放回的方式随机抽取方式随机抽取4件设抽取的件设抽取的4件产品中次品数为件产品中次品数为X,求随机变,求随机变量量X的分布列的分布列.我们知道,如果采用有放回抽样,则每次抽到次品的概率我们知道,如果采用有放回抽样,则每次抽到次品的概率为为0.08,且各次抽样的结果相互独立
2、,此时,且各次抽样的结果相互独立,此时X服从二项分布,即服从二项分布,即XB(4,0.08).问问 题题如果采用不放回抽样,那么抽取的如果采用不放回抽样,那么抽取的4件产品中次件产品中次品数品数X是否也服从二项分布?如果不服从,那么是否也服从二项分布?如果不服从,那么X的的分布列是什么分布列是什么?思思 考考采用不放回抽样,虽然每次抽到次品的概率都是采用不放回抽样,虽然每次抽到次品的概率都是0.08,但,但每次抽取不是同一个试验每次抽取不是同一个试验而且各次抽取的结果也不独立,而且各次抽取的结果也不独立,不符合不符合n重伯努利试验的特征,因此重伯努利试验的特征,因此X不服从二项分布不服从二项分
3、布.思思 考考可以根据古典概型求可以根据古典概型求X的分布列的分布列由题意可知,由题意可知,X可能的取值可能的取值为为0,1,2,3,4从从100 件产品中任取件产品中任取4件,样本空间包含件,样本空间包含个样本点,且每个样本点都是等可能发生的个样本点,且每个样本点都是等可能发生的其中其中4件产品中恰有件产品中恰有k 件次品的结果数为件次品的结果数为 由古典概型的知识,得由古典概型的知识,得X的分布列的分布列为为思思 考考计算的具体结果计算的具体结果(精确到精确到0.000 01)如表如表7.4-1所示所示.表表7.4-1X01234P0.712570.256210.029890.001310
4、.00002思思 考考一般地,假设一批产品共有一般地,假设一批产品共有N件,其中有件,其中有M件次品从件次品从N件产品中随机抽取件产品中随机抽取n件件(不放回不放回),用,用X表示抽取的表示抽取的n件产品件产品中的次品数,则中的次品数,则X的分布列为的分布列为其中其中n,N,MN*,M N,n N,m=max0,nN+M,r=minn,M如果随机变量如果随机变量X的分布列具有上式的形式,的分布列具有上式的形式,那么称随机变量那么称随机变量X服从服从超几何分布超几何分布(hypergeometric distribution).从从50名学生中随机选出名学生中随机选出5名学生代表,求名学生代表,
5、求甲被选中的概率甲被选中的概率.例例1 一批零件共有一批零件共有30个,其中有个,其中有3个不合格个不合格随机抽取随机抽取10个零件进行检测,求至少有个零件进行检测,求至少有1件不合格件不合格的概率的概率.例例2探探 究究服从超几何分布的随机变量的均值是什么服从超几何分布的随机变量的均值是什么?设随机变量设随机变量X服从超几何分布,则服从超几何分布,则X可以解释为从包含可以解释为从包含M件件次品的次品的N件产品中,不放回地随机抽取件产品中,不放回地随机抽取n件产品中的次品数令件产品中的次品数令 则则p是是N件产品的次品率,而件产品的次品率,而 是抽取的是抽取的n件产品的次件产品的次品率,我们猜
展开阅读全文
链接地址:https://www.163wenku.com/p-3588307.html