2022新人教A版(2019)《高中数学》选择性必修第二册第四章章末复习课ppt课件(共44张PPT).pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2022新人教A版(2019)《高中数学》选择性必修第二册第四章章末复习课ppt课件(共44张PPT).pptx》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 2022 新人 2019 选择性 必修 第二 第四 章章末 复习 ppt 课件 44 下载 _选择性必修 第二册_人教A版(2019)_数学_高中
- 资源描述:
-
1、内容索引知识网络考点突破真题体验1知识网络PART ONE2考点突破PART TWO一、等差(比)数列的基本运算1.数列的基本运算以小题居多,但也可作为解答题第一步命题,主要考查利用数列的通项公式及求和公式,求数列中的项、公差、公比及前n项和等,一般试题难度较小.2.通过等差、等比数列的基本运算,培养数学运算、逻辑推理等核心素养.例1在等比数列an中,已知a12,a416.(1)求数列an的通项公式;解设数列an的公比为q,由已知得162q3,解得q2,an22n12n,nN*.(2)若a3,a5分别为等差数列bn的第3项和第5项,试求数列bn的通项公式及前n项和Sn.解由(1)得a38,a5
2、32,则b38,b532.所以bn1612(n1)12n28,nN*.所以数列bn的前n项和反思感悟在等差数列和等比数列的通项公式an与前n项和公式Sn中,共涉及五个量:a1,an,n,d或q,Sn,其中a1和d或q为基本量,“知三求二”是指将已知条件转换成关于a1,d或q,an,Sn,n的方程组,利用方程的思想求出需要的量,当然在求解中若能运用等差(比)数列的性质会更好,这样可以化繁为简,减少运算量,同时还要注意整体代入思想方法的运用.解因为数列an的公差d1,且1,a1,a3成等比数列,跟踪训练1已知等差数列an的公差d1,前n项和为Sn.(1)若1,a1,a3成等比数列,求a1;解得a1
3、1或a12.解因为a10,所以a12,(2)在(1)的条件下,若a10,求Sn.二、等差、等比数列的判定1.判断等差或等比数列是数列中的重点内容,经常在解答题中出现,对给定条件进行变形是解题的关键所在,经常利用此类方法构造等差或等比数列.2.通过等差、等比数列的判定与证明,培养逻辑推理、数学运算等核心素养.(1)求b1,b2,b3;将n1代入得,a24a1,而a11,所以a24.将n2代入得,a33a2,所以a312.从而b11,b22,b34.(2)判断数列bn是否为等比数列,并说明理由;解bn是首项为1,公比为2的等比数列.理由如下:所以bn是首项为1,公比为2的等比数列.(3)求数列an
4、的通项公式.反思感悟判断和证明数列是等差(比)数列的方法(2)中项公式法:若2anan1an1(nN*,n2),则an为等差数列.(3)通项公式法:anknb(k,b是常数)an是等差数列;ancqn(c,q为非零常数)an是等比数列.(4)前n项和公式法:SnAn2Bn(A,B为常数,nN*)an是等差数列;SnAqnA(A,q为常数,且A0,q0,q1,nN*)an是公比不为1的等比数列.(2)试问a1a2是否是数列an中的项?如果是,是第几项?如果不是,请说明理由.解得t11N*,所以a1a2是数列an中的第11项.三、等差、等比数列的性质及应用1.等差、等比数列的性质主要涉及数列的单调
5、性、最值及其前n项和的性质,利用性质求数列中某一项等.试题充分体现“小”“巧”“活”的特点,题型多以选择题和填空题的形式出现,难度为中低档.2.借助等差、等比数列的性质及应用,提升逻辑推理、数学运算等核心素养.例3(1)已知an为等差数列,a1a3a5105,a2a4a699,以Sn表示数列an的前n项和,则使得Sn取得最大值的n是A.21 B.20 C.19 D.18解析由a1a3a5105得,3a3105,a335.同理可得a433,da4a32,ana4(n4)(2)412n.使Sn取得最大值的n是20.(2)记等比数列an的前n项积为Tn(nN*),已知am1am12am0,且T2m1
展开阅读全文
链接地址:https://www.163wenku.com/p-3586472.html