书签 分享 收藏 举报 版权申诉 / 26
上传文档赚钱

类型2019届高考数学一轮复习第六章数列6.4数列求和课件(文科)新人教B版.ppt

  • 上传人(卖家):flying
  • 文档编号:35823
  • 上传时间:2018-08-15
  • 格式:PPT
  • 页数:26
  • 大小:1.19MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2019届高考数学一轮复习第六章数列6.4数列求和课件(文科)新人教B版.ppt》由用户(flying)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2019 高考 数学 一轮 复习 第六 数列 6.4 求和 课件 文科 新人 下载 _一轮复习_高考专区_数学_高中
    资源描述:

    1、6.4数列求和,-2-,知识梳理,双基自测,2,3,1,自测点评,1.基本数列求和方法,-3-,知识梳理,双基自测,自测点评,2,3,1,2.非基本数列求和常用方法(1)倒序相加法:如果一个数列an的前n项中与首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(2)分组求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,先分别求和后再相加减.如已知an=2n+(2n-1),求Sn.(3)并项求和法:一个数列的前n项和中两两结合后可求和,则可用并项求和法.如已知an=(-1)nf(n

    2、),求Sn.(4)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用错位相减法来求,如等比数列的前n项和公式就是用此法推导的.,-4-,知识梳理,双基自测,自测点评,2,3,1,(5)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项相互抵消,从而求得其和.,-5-,知识梳理,双基自测,自测点评,2,3,1,2,-6-,知识梳理,双基自测,3,4,1,5,自测点评,1.下列结论正确的打“”,错误的打“”. (2)利用倒序相加法可求得sin21+sin22+sin23+sin288+sin289=44.5.()(3)若Sn=a+2

    3、a2+3a3+nan,当a0,且a1时,求Sn的值可用错位相减法求得. ()(4)如果数列an是周期为k的周期数列,那么Skm=mSk(m,k为大于1的正整数). ()()(6)若Sn=1-2+3-4+(-1)n-1n,则S50=-25. (),答案,-7-,知识梳理,双基自测,自测点评,2,3,4,1,5,2.(2017河北保定模拟)若数列an的通项公式是an=(-1)n(3n-2),则a1+a2+a10=()A.15B.12C.-12D.-15,答案,解析,-8-,知识梳理,双基自测,自测点评,2,3,4,1,5,3.(2017辽宁沈阳一模)已知公差不为零的等差数列an的前n项和为Sn.若

    4、a4是a3与a7的等比中项,S8=32,则S10等于()A.18B.24C.60D.90,答案,解析,-9-,知识梳理,双基自测,自测点评,2,3,4,1,5,答案,解析,-10-,知识梳理,双基自测,自测点评,2,3,4,1,5,5. 1+2x+3x2+nxn-1=(x0且x1).,答案,解析,-11-,知识梳理,双基自测,自测点评,1.含有参数的数列求和,常伴随着分类讨论.2.在错位相减法中,两式相减后,构成等比数列的有(n-1)项,整个式子共有(n+1)项.3.用裂项相消法求和时,裂项相消后,前面剩余几项,后面就剩余几项.4.数列求和后,要注意化简,通常要进行通分及合并同类项的运算.,-

    5、12-,考点1,考点2,考点3,例1在等比数列an中,已知a1=3,公比q1,等差数列bn满足b1=a1,b4=a2,b13=a3.(1)求数列an与bn的通项公式;(2)记cn=(-1)nbn+an,求数列cn的前n项和Sn.思考具有什么特点的数列适合并项求和?具有什么特点的数列适合分组求和?,-13-,考点1,考点2,考点3,解: (1)设等比数列an的公比为q,等差数列bn的公差为d.由已知,得a2=3q,a3=3q2,b1=3,b4=3+3d,b13=3+12d,d=2,an=3n,bn=2n+1.(2)由题意,得cn=(-1)nbn+an=(-1)n(2n+1)+3n,Sn=c1+c

    6、2+cn=(-3+5)+(-7+9)+(-1)n-1(2n-1)+(-1)n(2n+1)+3+32+3n.,-14-,考点1,考点2,考点3,解题心得1.若数列an的通项公式为an=(-1)nf(n),则一般利用并项求和法求数列前n项和,如果数列f(n)是等差数列,因为(-1)n是等比数列,所以也可以用错位相减法求和.2.具有下列特点的数列适合分组求和(1)若an=bncn,且bn,cn为等差数列或等比数列,可采用分组求和法求an的前n项和;(2)通项公式为 的数列,其中数列bn,cn是等比数列或等差数列,可采用分组求和法求和.,-15-,考点1,考点2,考点3,对点训练1已知等差数列an满足

    7、:a5=11,a2+a6=18.(1)求数列an的通项公式;(2)若bn=an+2n,求数列bn的前n项和Sn.,答案,-16-,考点1,考点2,考点3,例2(2017山东,文19)已知an是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列an的通项公式;(2)bn为各项非零的等差数列,其前n项和为Sn.已知S2n+1=bnbn+1,求数列 的前n项和Tn.思考具有什么特点的数列适合用错位相减法求和?,-17-,考点1,考点2,考点3,-18-,考点1,考点2,考点3,解题心得1.一般地,如果数列an是等差数列,bn是等比数列,求数列anbn的前n项和,可采用错位相减法求

    8、和,解题思路是:和式两边先同乘等比数列bn的公比,再作差求解.2.在写出“Sn”与“qSn”的表达式时,应特别注意将两式“错项对齐”,以便下一步正确求出“Sn-qSn”的表达式.,-19-,考点1,考点2,考点3,对点训练2(2017天津,文18)已知an为等差数列,前n项和为Sn(nN+),bn是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求an和bn的通项公式;(2)求数列a2nbn的前n项和(nN+).,-20-,考点1,考点2,考点3,解: (1)设等差数列an的公差为d,等比数列bn的公比为q.由已知b2+b3=12,得b1(q+q

    9、2)=12,而b1=2,所以q2+q-6=0.又因为q0,解得q=2.所以,bn=2n.由b3=a4-2a1,可得3d-a1=8.由S11=11b4,可得a1+5d=16,联立,解得a1=1,d=3,由此可得an=3n-2.所以,an的通项公式为an=3n-2,bn的通项公式为bn=2n.,-21-,考点1,考点2,考点3,(2)设数列a2nbn的前n项和为Tn,由a2n=6n-2,有Tn=42+1022+1623+(6n-2)2n,2Tn=422+1023+1624+(6n-8)2n+(6n-2)2n+1,上述两式相减,得-Tn=42+622+623+62n-(6n-2)2n+1=-(3n-

    10、4)2n+2-16,得Tn=(3n-4)2n+2+16.所以,数列a2nbn的前n项和为(3n-4)2n+2+16.,-22-,考点1,考点2,考点3,例3(2017全国,文17)设数列an满足a1+3a2+(2n-1)an=2n,(1)求an的通项公式;思考裂项相消法的基本思想是什么?,答案,-23-,考点1,考点2,考点3,解题心得裂项相消法的基本思路就是把an分拆成an=bn+k-bn(kN+)的形式,从而达到在求和时绝大多数项相消的目的.在解题时要善于根据这个基本思路变换数列an的通项公式,使之符合裂项相消的条件.,-24-,考点1,考点2,考点3,对点训练3已知数列an为等差数列,且

    11、 ,3,a4,a10成等比数列.(1)求an;(2)求数列 的前n项和Sn.,答案,-25-,考点1,考点2,考点3,1.数列求和,一般应从通项入手,若通项未知,先求通项,再通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.2.解决非等差数列、非等比数列的求和,主要有两种思路.(1)转化的思想,即将一般数列设法转化为等差数列或等比数列,这一思想方法往往通过通项分解或错位相减来完成;(2)不能转化为等差数列或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.,-26-,考点1,考点2,考点3,1.直接应用公式求和时,要注意公式的应用范围.2.在应用错位相减法求和时,注意观察未合并项的正负号.3.在应用裂项相消法求和时,要注意消项的规律具有对称性,即前面剩多少项,后面就剩多少项.,

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2019届高考数学一轮复习第六章数列6.4数列求和课件(文科)新人教B版.ppt
    链接地址:https://www.163wenku.com/p-35823.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库