书签 分享 收藏 举报 版权申诉 / 23
上传文档赚钱

类型一阶线性微方课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:3577923
  • 上传时间:2022-09-20
  • 格式:PPT
  • 页数:23
  • 大小:594KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《一阶线性微方课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    一阶 线性 课件
    资源描述:

    1、第二节 一阶微分方程 一、可分离变量的微分方程二、齐次方程三、一阶线性微分方程)()(xQyxPdxdy 一阶线性微分方程一阶线性微分方程的标准形式的标准形式:,0)(xQ当当上方程称为上方程称为齐次的齐次的.上方程称为上方程称为非齐次的非齐次的.,0)(xQ当当例如例如,2xydxdy ,sin2ttxdtdx ,32 xyyy,1cos yy线性的线性的;非线性的非线性的.三、三、一阶线性微分方程一阶线性微分方程.0)(yxPdxdy,)(dxxPydy ,)(dxxPydy,ln)(lnCdxxPy 齐次线性方程的通解为齐次线性方程的通解为.)(dxxPCey1.齐次齐次线性方程线性方程

    2、一阶线性微分方程的一阶线性微分方程的解法解法(使用分离变量法使用分离变量法)2.非齐次非齐次线性方程线性方程).()(xQyxPdxdy 讨论讨论,)()(dxxPyxQydy 两边积分两边积分,)()(ln dxxPdxyxQy),()(xvdxyxQ为为设设,)()(ln dxxPxvy.)()(dxxPxveey即即非齐次线性方程通解形式非齐次线性方程通解形式与齐次线性方程的通解相比与齐次线性方程的通解相比:()()v xCu xe常数变易法常数变易法把齐次线性方程通解中的常数把齐次线性方程通解中的常数变易为待定函数的方法变易为待定函数的方法.实质实质:未知函数的变量代换未知函数的变量代

    3、换.),()(xyxu原未知函数原未知函数新未知函数新未知函数作变换作变换 dxxPexuy)()(,)()()()()(dxxPdxxPexPxuexuy代代入入原原方方程程得得和和将将yy,)()()(CdxexQxudxxP ),()()(xQexudxxP 积分得积分得一阶线性非齐次微分方程的通解一阶线性非齐次微分方程的通解为为:dxxPdxxPeCdxexQy)()()(dxexQeCedxxPdxxPdxxP )()()()(对应齐次对应齐次方程通解方程通解非齐次方程特解非齐次方程特解.sin1的通解的通解求方程求方程xxyxy ,1)(xxP,sin)(xxxQ Cdxexxey

    4、dxxdxx11sin Cdxexxexxlnlnsin Cxdxxsin1 .cos1Cxx 解解例例1 1例例2 2 如图所示,平行于如图所示,平行于 轴的动直线被曲轴的动直线被曲 线线 与与 截下的线段截下的线段PQ之之长数值上等于阴影部分的面积长数值上等于阴影部分的面积,求曲线求曲线 .y)(xfy )0(3 xxy)(xf,)()(230yxdxxfx xyxydx03,两边求导得两边求导得,32xyy 解解解此微分方程解此微分方程xyoxPQ3xy )(xfy 23dxdxyex edxC,6632 xxCex,0|0 xy由由,6 C得得所求曲线为所求曲线为).222(32 xx

    5、eyx23xyy 3(0.ydxxydy求)的通解例例 3解解30dxxydyy21dxxydyy即即()()xP y xQ y1121()dydyyyxey edyC3214Cxyy424(4)xyyCCC211.;sin()dyydxxxyx解解,xyz 令令,dxdyxydxdz 则则,sin1)(sin1(22zxyxyxxydxdz ,42sin2Cxzz 分离变量法得分离变量法得,代回代回将将xyz 所求通解为所求通解为.4)2sin(2Cxxyxy 例例4 4 用适当的变量代换解下列微分方程用适当的变量代换解下列微分方程:12.;dydxxy解解,uyx 令令,1 dxdudxd

    6、y则则代入原式代入原式,11udxdu 分离变量法得分离变量法得,)1ln(Cxuu ,代回代回将将yxu 所求通解为所求通解为,)1ln(Cyxy 11 yeCxy或或另解另解.yxdydx 方程变形为方程变形为1.齐次方程齐次方程2.线性非齐次方程线性非齐次方程)(xyfy ;xuy 令令;)()(dxxPexuy令令()()()P x dxP x dxyeQ x edxC思考题思考题求微分方程求微分方程 的通解的通解.yxyyyysin2sincoscos 解:yyxyydydxcossin2sincos ,tan2sinyxy ,2sintanyxydydx Cdyeyexyycosl

    7、ncosln2sin Cdyyyyycoscossin2cos .cos2cosyCy 练习练习判别下列方程类型:xyyxyxyxdddd)1()ln(lndd)2(xyyxyx0d2d)()3(3yxxxy0d)(d2)4(3yxyxyxxyyydd1 可分离可分离 变量方程变量方程xyxyxylndd齐次方程齐次方程221dd2xyxxy线性方程线性方程221dd2yxyyx线性方程线性方程22ABB),(yxfy 可降阶高阶微分方程 第四节一、一、型的微分方程型的微分方程 二、二、型的微分方程型的微分方程()()nyf x),(yyfy 三、三、型的微分方程型的微分方程 一、一、)()(

    8、xfyn令,)1(nyz)(ddnyxz则因此1d)(Cxxfz即1)1(d)(Cxxfyn同理可得2)2(d Cxyn1d)(Cxxfxd xxfd)(依次通过 n 次积分,可得含 n 个任意常数的通解.,)(xf21CxC型的微分方程型的微分方程 例例1.cos2xeyx 求解解解:12cosCxdxeyx 12sin21Cxexxey241xey2811121CC此处xsin21xC32CxCxcos21CxC),(yxfy 型的微分方程型的微分方程 设,)(xpy,py 则原方程化为一阶方程),(pxfp 设其通解为),(1Cxp则得),(1Cxy再一次积分,得原方程的通解21d),(CxCxy二、二、例例2.求解yxyx 2)1(2,10 xy3 0 xy解解:),(xpy 设,py 则代入方程得pxpx2)1(2分离变量分离变量)1(d2d2xxxpp积分得,ln)1(lnln12Cxp)1(21xCp即,3 0 xy利用,31C得于是有)1(32xy两端再积分得233Cxxy利用,10 xy,12C得133xxy因此所求特解为三、三、),(yyfy 型的微分方程型的微分方程 令),(ypy xpydd 则xyypddddyppdd故方程化为),(ddpyfypp设其通解为),(1Cyp即得),(1Cyy分离变量后积分,得原方程的通解21),(dCxCyy

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:一阶线性微方课件.ppt
    链接地址:https://www.163wenku.com/p-3577923.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库