不定积分的换元积分法99312课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《不定积分的换元积分法99312课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不定积分 积分 99312 课件
- 资源描述:
-
1、第二节第二节 不定积分的换元积分法不定积分的换元积分法 第一类换元法第一类换元法 第二类换元法第二类换元法 小结小结第1页,共47页。问题问题 xdx2cos,2sinCx 解决方法解决方法利用复合函数,设置中间变量利用复合函数,设置中间变量.过程过程令令xt2,21dtdx xdx2cosdtt cos21Ct sin21.2sin21Cx 一、第一类换元法一、第一类换元法第2页,共47页。在一般情况下:在一般情况下:设设),()(ufuF 则则.)()(CuFduuf如果如果)(xu (可微)(可微)dxxxfxdF)()()(CxFdxxxf)()()()()(xuduuf 由此可得换元
2、法定理由此可得换元法定理第3页,共47页。设设)(uf具具有有原原函函数数,dxxxf)()()()(xuduuf 第一类换元公式第一类换元公式(凑微分法凑微分法)说明说明使用此公式的关键在于将使用此公式的关键在于将 dxxg)(化为化为.)()(dxxxf观察重点不同,所得结论不同观察重点不同,所得结论不同.)(xu 可可导导,则有换元公式则有换元公式定理定理1 1第4页,共47页。例例1 1 求求.2sin xdx解解(一)(一)xdx2sin )2(2sin21xxd;2cos21Cx 解解(二)(二)xdx2sin xdxxcossin2 )(sinsin2xxd ;sin2Cx 解解
3、(三)(三)xdx2sin xdxxcossin2 )(coscos2xxd .cos2Cx 第5页,共47页。例例2 2 求求.231dxx 解解,)23(23121231 xxxdxx 231dxxx)23(23121 duu 121Cu ln21.)23ln(21Cx dxbaxf)(baxuduufa)(1一般地一般地第6页,共47页。例例3 3 求求.)ln21(1dxxx 解解dxxx )ln21(1)(lnln211xdx )ln21(ln21121xdx xuln21 duu121Cu ln21.)ln21ln(21Cx 第7页,共47页。例例4 4 求求.)1(3dxxx 解
4、解dxxx 3)1(dxxx 3)1(11)1()1(1)1(132xdxx 221)1(2111CxCx .)1(21112Cxx 第8页,共47页。例例5 5 求求.122dxxa 解解dxxa 221dxaxa 222111 axdaxa2111.arctan1Caxa 第9页,共47页。例例6 6 求求.25812dxxx 解解dxxx 25812dxx 9)4(12dxx 13413122 341341312xdx.34arctan31Cx 第10页,共47页。例例7 7 求求.11dxex 解解dxex 11dxeeexxx 11dxeexx 11dxeedxxx 1)1(11xx
5、ededx .)1ln(Cexx 第11页,共47页。例例8 8 求求.)11(12dxexxx 解解,1112xxx dxexxx 12)11()1(1xxdexx .1Cexx 第12页,共47页。例例9 9 求求.12321dxxx 原式原式 dxxxxxxx 123212321232dxxdxx 12413241)12(1281)32(3281 xdxxdx .121213212133Cxx 第13页,共47页。例例1010 求求解解.cos11 dxx dxxcos11 dxxxxcos1cos1cos1 dxxx2cos1cos1 dxxx2sincos1 )(sinsin1sin
6、122xdxdxx.sin1cotCxx 第14页,共47页。例例1111 求求解解.cossin52 xdxx xdxx52cossin )(sincossin42xxdx )(sin)sin1(sin222xdxx )(sin)sinsin2(sin642xdxxx.sin71sin52sin31753Cxxx 说明说明 当被积函数是三角函数相乘时,拆开奇次项当被积函数是三角函数相乘时,拆开奇次项去凑微分去凑微分.第15页,共47页。例例1212 求求解解.2cos3cos xdxx),cos()cos(21coscosBABABA ),5cos(cos212cos3cosxxxx dxx
7、xxdxx)5cos(cos212cos3cos.5sin101sin21Cxx 第16页,共47页。例例1313 求求解解(一)(一)dxxsin1.csc xdx xdxcsc dxxx2cos2sin21 22cos2tan12xdxx 2tan2tan1xdxCx 2tanln.)cotln(cscCxx (使用了三角函数恒等变形)(使用了三角函数恒等变形)第17页,共47页。解解(二)(二)dxxsin1 xdxcsc dxxx2sinsin )(coscos112xdxxucos duu211 duuu111121Cuu 11ln21.cos1cos1ln21Cxx 类似地可推出类
8、似地可推出.)tanln(secsec Cxxxdx第18页,共47页。解解例例1414 设设 求求 .,cos)(sin22xxf )(xf令令xu2sin,1cos2ux ,1)(uuf duuuf 1)(,212Cuu .21)(2Cxxxf 第19页,共47页。例例1515 求求解解.2arcsin412dxxx dxxx 2arcsin41222arcsin2112xdxx )2(arcsin2arcsin1xdx .2arcsinlnCx 第20页,共47页。问题问题?125 dxxx解决方法解决方法改变中间变量的设置方法改变中间变量的设置方法.过程过程令令txsin,costdt
9、dx dxxx251tdtttcossin1)(sin25 tdtt25cossin (应用(应用“凑微分凑微分”即可求出结果)即可求出结果)二、第二类换元法二、第二类换元法第21页,共47页。其其中中)(x 是是)(tx 的的反反函函数数.证证设设 为为 的原函数的原函数,)(t)()(ttf 令令)()(xxF 则则dxdtdtdxF )()()(ttf ,)(1t 设设)(tx 是单调的、可导的函数,是单调的、可导的函数,)()()()(xtdtttfdxxf 则有换元公式则有换元公式并且并且0)(t,又又设设)()(ttf 具具有有原原函函数数,定理定理2 2第22页,共47页。第二类
10、积分换元公式第二类积分换元公式 CxFdxxf)()(,)(Cx )()()()(xtdtttfdxxf )(tf ).(xf 说说明明)(xF为为)(xf的的原原函函数数,第23页,共47页。例例1616 求求解解).0(122 adxax令令taxtan tdtadx2sec dxax221tdtata2secsec1 tdtsecCtt )tanln(sectax22ax .ln22Caaxax 2,2t第24页,共47页。例例1717 求求解解.423dxxx 令令txsin2 tdtdxcos2 2,2tdxxx 234 tdtttcos2sin44sin223 tdtt23coss
展开阅读全文