三角函数.板块一.三角函数基本概念.学生版1.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《三角函数.板块一.三角函数基本概念.学生版1.doc》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 板块 基本概念 学生 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、板块一.三角函数的基本概念典例分析题型一:任意角与弧度制【例1】 下列各对角中终边相同的角是( )。A 和 B 和 C 和 D 和【例2】 若角、的终边相同,则的终边在.A.轴的非负半轴上B.轴的非负半轴上C.轴的非正半轴上D.轴的非正半轴上【例3】 当角与的终边互为反向延长线,则的终边在.A.轴的非负半轴上B.轴的非负半轴上C.轴的非正半轴上D.轴的非正半轴上【例4】 时钟经过一小时,时针转过了( )。A B C D 【例5】 两个圆心角相同的扇形的面积之比为,则两个扇形周长的比为( )A B C D 【例6】 下列命题中正确的命题是( )A 若两扇形面积的比是,则两扇形弧长的比是B 若扇形
2、的弧长一定,则面积存在最大值C 若扇形的面积一定,则弧长存在最小 D 任意角的集合可以与实数集之间建立一种一一对应关系【例7】 一个半径为的扇形,它的周长是,则这个扇形所含弓形的面积是( )A. B C D 【例8】 下列说法正确的有几个( )(1)锐角是第一象限的角;(2)第一象限的角都是锐角;(3)小于的角是锐角;(4)的角是锐角。A 1个 B 2个 C 3个 D 4个【例9】 已知角的顶点与坐标系原点重合,始边落在轴的正半轴上,则角是第( )象限角。A 第一象限角 B 第二象限角 C 第三象限角 D 第四象限角【例10】 下面四个命题中正确的是( )A.第一象限的角必是锐角B.锐角必是第
3、一象限的角C.终边相同的角必相等D.第二象限的角必大于第一象限的角【例11】 已知角的终边经过点,则与终边相同的角的集合是.A.B.C.D.【例12】 若是第四象限角,则是( )A 第一象限角 B 第二象限角C 第三象限角 D 第四象限角【例13】 若与的终边互为反向延长线,则有( )A B C D 【例14】 与终边相同的最小正角为_,与终边相同的最小正角是_。【例15】 终边在坐标轴上的角的集合.【例16】 若和的终边关于y轴对称,则和的关系是.【例17】 若角和的终边关于轴对称,则角和之间的关系为.若角与的终边关于轴对称,则角和之间的关系为.【例18】 在,找出与下列各角终边相同的角,并
4、判断它是哪个象限:(1);(2)。【例19】 写出终边在轴上的角的集合(用到的角表示)。【例20】 若,则_(其中扇形的圆心角为,弧长为,半径为)。【例21】 钟表经过4小时,时针与分针各转了_(填度)。【例22】 如果角与角具有同一条终边,角与角具有同一条终边,那么与的关系是什么?【例23】 已知角是第二象限角,求所在的象限。【例24】 已知集合,则.A.B.C.D.【例25】 若;,则下列关系中正确的是( )A B C D 【例26】 圆弧长度等于截其圆的内接正三角形边长,则其圆心角的弧度数为_。【例27】 用弧度制表示:终边在轴上的角的集合终边在轴上的角的集合终边在坐标轴上的角的集合。【
5、例28】 已知扇形周长为,面积为,求扇形中心角的弧度数。【例29】 视力正常的人,能读远处文字的视角不小于,试求:(1)距人远处所能阅读文字的大小如何?(2)要看清长,宽均为的大字标语,人距离标语的最远距离是多少米?【例30】 已知扇形的面积为,当扇形的圆心角为多少弧度时,扇形的周长最小?并求出此最小值。【例31】 (1)把化成弧度制; (2)把化成角度制。【例32】 求值:(1) (2)。【例33】 已知扇形的面积是,它的周长是,则弦的长等于多少?【例34】 将下列各角表示为的形式,并判断角在第几象限。(1); (2)。【例35】 写出与下列各角终边相同的角的集合,并把集合中适合不等式的元素
展开阅读全文