推理与证明.板块一.合情推理与演绎推理.学生版.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《推理与证明.板块一.合情推理与演绎推理.学生版.doc》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 推理 证明 板块 合情 演绎 学生 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、板块一.合情推理与演绎推理典例分析题型一:合情推理【例1】 迄今为止,人类已借助“网格计算”技术找到了630万位的最大质数。小王发现由8个质数组成的数列41,43,47,53,61,71,83,97的一个通项公式,并根据通项公式得出数列的后几项,发现它们也是质数。小王欣喜万分,但小王按得出的通项公式,再往后写几个数发现它们不是质数。他写出不是质数的一个数是 ( )A1643 B1679 C1681 D1697【例2】 下面给出了关于复数的四种类比推理:复数的加减法运算可以类比多项式的加减法运算法则;由向量A的性质|A|2=A2类比得到复数z的性质|z|2=z2;方程有两个不同实数根的条件是可以
2、类比得到:方程有两个不同复数根的条件是;由向量加法的几何意义可以类比得到复数加法的几何意义. 其中类比错误的是 ( )A. B. C. D. 【例3】 定义的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(A)、(B)所对应的运算结果可能是 ( ) (1) (2) (3) (4) (A) (B)A. B. C. D.【例4】 在平面几何里,有勾股定理:“设ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”拓展到空间,类比平面几何的勾股定理,“设三棱锥ABCD的三个侧面ABC、ACD、ADB 两两相互垂直,则可得” ( )(A)AB2+AC2+ AD2=BC2+ CD2
3、 + BD2 (B)(C) (D)AB2AC2AD2=BC2 CD2 BD2【例5】 已知 ,猜想的表达式为 ( )A. B. C. D.【例6】 观察下列数:1,3,2,6,5,15,14,x,y,z,122,中x,y,z的值依次是 ( )(A) 42,41,123; (B) 13,39,123; (C)24,23,123; (D)28,27,123.【例7】 观察下列数的特点1,2,2,3,3,3,4,4,4,4, 中,第100项是( )(A) 10 (B) 13 (C) 14 (D) 100【例8】 设,利用课本中推导等差数列前n项和公式的方法,可求得的值为 ( )A、 B、2 C、3
4、D、4【例9】 平面上有n个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成块区域,有,则的表达式为 ( )A、 B、 C、 D、【例10】 在数列1,2,2,3,3,3,4,4,4,4,中,第25项为 ( )A25 B6 C7 D8 【例11】 如图,椭圆中心在坐标原点,F为左焦点,当时,其离心率为,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出”黄金双曲线”的离心率e等于 ( ) A. B. C. D. OxABFy【例12】 观察式子:,则可归纳出式子为( )A、 B、C、 D、【例13】 公比为的等比数列中,若是数列的前项积,则有也成等比数列,且公比为;类比上述结论
5、,相应地在公差为的等差数列中,若是的前项和,则数列 也成等差数列,且公差为 。 【例14】 考察下列一组不等式:.将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式可以是_.【例15】 如下图,第(1)个多边形是由正三角形“扩展“而来,第(2)个多边形是由正四边形“扩展”而来,如此类推.设由正边形“扩展”而来的多边形的边数为,则 ; .【例16】 古希腊数学家把数1,3,6,10,15,21,叫做三角数,它有一定的规律性,第30个三角数与第28个三角数的差为 。【例17】 数列是正项等差数列,若,则数列也为等差数列. 类比上述结论,写出正项等比
6、数列,若= ,则数列也为等比数列.【例18】 在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝, 第二件首饰是由6颗珠宝构成如图1所示的正六边形, 第三件首饰是由15颗珠宝构成如图2所示的正六边形, 第四件首饰是由28颗珠宝构成如图3所示的正六边形, 第五件首饰是由45颗珠宝构成如图4所示的正六边形, 以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断第6件首饰上应有_颗珠宝;则前件首饰所用珠宝总数为_颗.(结果用表示)图1图2图3图4【例19】 在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾
7、股定理有:设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥OLMN,如果用表示三个侧面面积,表示截面面积,那么你类比得到的结论是 .【例20】 对于平面几何中的命题“如果两个角的两边分别对应垂直,那么这两个角相等或互补”,在立体几何中,类比上述命题,可以得到命题: 。【例21】 依次有下列等式:,按此规律下去,第8个等式为 。【例22】 在等差数列中,若,则有等式成立,类比上述性质,相应地:在等比数列中,若,则有等式 成立.【例23】 将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0-1三角数表从上往下数,第1次全行的数都为1的是第1行,第2次全行的
8、数都为1的是第3行,第次全行的数都为1的是第行;第61行中1的个数是第1行 1 1第2行 1 0 1第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1 【例24】 在平面几何里,可以得出正确结论:“正三角形的内切圆半径等于这正三角形的高的”。拓展到空间,类比平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的 。【例25】 已知:; 通过观察上述两等式的规律,请你写出一般性的命题: _=( * )并给出( * )式的证明。【例26】 观察以下各等式:,分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明。【例27】 在ABC中,
9、若C=90,AC=b,BC=A,则ABC的外接圆的半径,把上面的结论推广到空间,写出相类似的结论。【例28】 请你把不等式“若是正实数,则有”推广到一般情形,并证明你的结论。【例29】 二十世纪六十年代,日本数学家角谷发现了一个奇怪现象:一个自然数,如果它是偶数就用2除它,如果是奇数,则将它乘以3后再加1,反复进行这样两种运算,必然会得到什么结果,试考查几个数并给出猜想。【例30】 圆的垂径定理有一个推论:平分弦(不是直径)的直径垂直于弦,这一性质能推广到椭圆吗?设AB是椭圆的任一弦,M是AB的中点,设OM与AB的斜率都存在,并设为KOM、KAB,则KOM与KAB之间有何关系?并证明你的结论。
展开阅读全文