高考专题突破三 高考中的数列问题.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考专题突破三 高考中的数列问题.docx》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考专题突破三 高考中的数列问题 高考 专题 突破 中的 数列 问题 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、1(2017广州质检)数列an是公差不为0的等差数列,且a1,a3,a7为等比数列bn中连续的三项,则数列bn的公比为()A. B4C2 D.答案C解析设数列an的公差为d(d0),由aa1a7,得(a12d)2a1(a16d),解得a12d,故数列bn的公比q2.2已知等差数列an的前n项和为Sn,a55,S515,则数列的前100项和为()A. B.C. D.答案A解析设等差数列an的首项为a1,公差为d.a55,S515,ana1(n1)dn.,数列的前100项和为1.3已知数列an满足a11,an1an2n(nN*),Sn是数列an的前n项和,则S2 016等于()A22 0161 B
2、321 0083C321 0081 D322 0162答案B解析依题意得anan12n,an1an22n1,于是有2,即2,数列a1,a3,a5,a2n1,是以a11为首项,2为公比的等比数列;数列a2,a4,a6,a2n,是以a22为首项,2为公比的等比数列,于是有S2 016(a1a3a5a2 015)(a2a4a6a2 016)321 0083,故选B.4(2015课标全国)设Sn是数列an的前n项和,且a11,an1SnSn1,则Sn_.答案解析由题意,得S1a11,又由an1SnSn1,得Sn1SnSnSn1,因为Sn0,所以1,即1,故数列是以1为首项,1为公差的等差数列,所以1(
3、n1)n,所以Sn.5已知数列an的前n项和为Sn,对任意nN*都有Snan,若1Sk9 (kN*),则k的值为_答案4解析由题意,Snan,当n2时,Sn1an1,两式相减,得ananan1,an2an1,又a11,an是以1为首项,以2为公比的等比数列,an(2)n1,Sk,由1Sk9,得4(2)k0,nN*.(1)若a2,a3,a2a3成等差数列,求数列an的通项公式;(2)设双曲线x21的离心率为en,且e22,求eee.解(1)由已知,Sn1qSn1,得Sn2qSn11,两式相减得an2qan1,n1.又由S2qS11得a2qa1,故an1qan对所有n1都成立所以,数列an是首项为
4、1,公比为q的等比数列从而anqn1.由a2,a3,a2a3成等差数列,可得2a3a2a2a3,所以a32a2,故q2.所以an2n1(nN*)(2)由(1)可知,anqn1,所以双曲线x21的离心率en.由e22,解得q,所以eee(11)(1q2)1q2(n1)n1q2q2(n1)nn(3n1)思维升华等差数列、等比数列综合问题的解题策略(1)分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序(2)注意细节:在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中
5、第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的在等差数列an中,a1030,a2050.(1)求数列an的通项公式;(2)令bn,证明:数列bn为等比数列;(3)求数列nbn的前n项和Tn.(1)解设数列an的公差为d,则ana1(n1)d,由a1030,a2050,得方程组解得所以an12(n1)22n10.(2)证明由(1),得bn22n101022n4n,所以4.所以bn是首项为4,公比为4的等比数列(3)解由nbnn4n,得Tn14242n4n,4Tn142(n1)4nn4n1,得3Tn4424nn4n1n4n1.所以Tn.题型二数列的通项与求和例2已知数列an
6、的前n项和为Sn,在数列bn中,b1a1,bnanan1(n2),且anSnn.(1)设cnan1,求证:cn是等比数列;(2)求数列bn的通项公式(1)证明anSnn,an1Sn1n1.,得an1anan11,2an1an1,2(an11)an1,an1是等比数列首项c1a11,又a1a11.a1,c1,公比q.又cnan1,cn是以为首项,为公比的等比数列(2)解由(1)可知cn()()n1()n,ancn11()n.当n2时,bnanan11()n1()n1()n1()n()n.又b1a1,代入上式也符合,bn()n.思维升华(1)一般求数列的通项往往要构造数列,此时要从证的结论出发,这
展开阅读全文