9.8 第2课时范围、最值问题.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《9.8 第2课时范围、最值问题.docx》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 9.8 第2课时范围、最值问题 课时 范围 问题 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、第2课时范围、最值问题题型一范围问题例1(2015天津)已知椭圆1(ab0)的左焦点为F(c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2y2截得的线段的长为c,|FM|.(1)求直线FM的斜率;(2)求椭圆的方程;(3)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围解(1)由已知,有,又由a2b2c2,可得a23c2,b22c2.设直线FM的斜率为k(k0),F(c,0),则直线FM的方程为yk(xc)由已知,有222,解得k.(2)由(1)得椭圆方程为1,直线FM的方程为y(xc),两个方程联立,消去y,整理得3x22cx5c20,解得xc或
2、xc.因为点M在第一象限,可得M的坐标为.由|FM|.解得c1,所以椭圆的方程为1.(3)设点P的坐标为(x,y),直线FP的斜率为t,得t,即直线FP的方程为yt(x1)(x1),与椭圆方程联立,消去y,整理得2x23t2(x1)26,又由已知,得t,解得x1或1x0.设直线OP的斜率为m,得m,即ymx(x0),与椭圆方程联立,整理得m2.当x时,有yt(x1)0,因此m0,于是m,得m.当x(1,0)时,有yt(x1)0.因此m0,于是m,得m.综上,直线OP的斜率的取值范围是.思维升华解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定
3、参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围(2016黄冈模拟)已知椭圆C:1(ab0)与双曲线y21的离心率互为倒数,且直线xy20经过椭圆的右顶点(1)求椭圆C的标准方程;(2)设不过原点O的直线与椭圆C交于M,N两点,且直线OM,MN,ON的斜率依次成等比数列,求OMN面积的取值范围解(1)双曲线的离心率为,椭圆的离心率e
4、.又直线xy20经过椭圆的右顶点,右顶点为(2,0),即a2,c,b1,椭圆方程为y21.(2)由题意可设直线的方程为ykxm(k0,m0),M(x1,y1),N(x2,y2)联立消去y,并整理得(14k2)x28kmx4(m21)0,则x1x2,x1x2,于是y1y2(kx1m)(kx2m)k2x1x2km(x1x2)m2.又直线OM,MN,ON的斜率依次成等比数列,故k2m20.由m0得k2,解得k.又由64k2m216(14k2)(m21)16(4k2m21)0,得0m22,显然m21(否则x1x20,x1,x2中至少有一个为0,直线OM,ON中至少有一个斜率不存在,与已知矛盾)设原点O
5、到直线的距离为d,则SOMN|MN|d|x1x2|m|.故由m的取值范围可得OMN面积的取值范围为(0,1)题型二最值问题命题点1利用三角函数有界性求最值例2(2016锦州模拟)过抛物线y24x的焦点F的直线交抛物线于A,B两点,点O是坐标原点,则|AF|BF|的最小值是()A2 B.C4 D2答案C解析设直线AB的倾斜角为,可得|AF|,|BF|,则|AF|BF|4.命题点2数形结合利用几何性质求最值例3(2015江苏)在平面直角坐标系xOy中,P为双曲线x2y21右支上的一个动点若点P到直线xy10的距离大于c恒成立,则实数c的最大值为_答案解析双曲线x2y21的渐近线为xy0,直线xy1
展开阅读全文