书签 分享 收藏 举报 版权申诉 / 7
上传文档赚钱

类型推理与证明.板块三.数学归纳法.学生版.doc

  • 上传人(卖家):和和062
  • 文档编号:357192
  • 上传时间:2020-03-11
  • 格式:DOC
  • 页数:7
  • 大小:617KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《推理与证明.板块三.数学归纳法.学生版.doc》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    推理 证明 板块 数学 归纳法 学生 下载 _一轮复习_高考专区_数学_高中
    资源描述:

    1、板块三.数学归纳法典例分析题型一:数学归纳法基础【例1】 已知n为正偶数,用数学归纳法证明时,若已假设为偶数)时命题为真,则还需要用归纳假设再证 ( )A时等式成立B时等式成立C时等式成立D时等式成立【例2】 已知n是正偶数,用数学归纳法证明时,若已假设n=k(且为偶数)时命题为真,则还需证明( )A.n=k+1时命题成立 B. n=k+2时命题成立 C. n=2k+2时命题成立 D. n=2(k+2)时命题成立【例3】 某个命题与正整数n有关,如果当时命题成立,那么可推得当时命题也成立. 现已知当时该命题不成立,那么可推得 ( )A当n=6时该命题不成立 B当n=6时该命题成立C当n=8时该

    2、命题不成立 D当n=8时该命题成立【例4】 利用数学归纳法证明“ ”时,从“”变到“”时,左边应增乘的因式是 ( ) A B C D 【例5】 用数学归纳法证明,在验证n=1时,左边计算所得的式子是( )A. 1 B. C. D. 【例6】 用数学归纳法证明,从“k到k+1”左端需乘的代数式是( )A.2k+1 B. C. D. 【例7】 用数学归纳法证明:1+时,在第二步证明从n=k到n=k+1成立时,左边增加的项数是( )A. B. C. D.【例8】 设,用数学归纳法证明“”时,第一步要证的等式是 【例9】 用数学归纳法证明“”()时,从 “到”时,左边应增添的式子是_ _。【例10】

    3、用数学归纳法证明不等式的过程中,由k推导到k+1时,不等式左边增加的式子是 【例11】 是否存在常数是等式对一切成立?证明你的结论。题型二:证明整除问题【例12】 若存在正整数,使得能被整除,则= 【例13】 证明:能被整除【例14】 已知数列满足,当时,求证:数列的第项能被3整除【例15】 用数学归纳法证明:能被9整除【例16】 设是任意正整数,求证:能被6整除【例17】 用数学归纳法证明:对于一切正整数,能被264整除【例18】 (n4且nN*)个正数排成一个n行n列的数阵:第1列第2列第3列 第n列第1行 第2行 第n行 其中(1in,1kn,且i,kN)表示该数阵中位于第i行第k列的数

    4、.已知该数阵每一行的数成等差数列,每一列的数成公比为2的等比数列,且=8,=20.()求和;()设,证明:当n为3的倍数时,()能被21整除.题型三:证明恒等式与不等式【例19】 证明不等式()【例20】 用数学归纳法证明:,.【例21】 证明:,.【例22】 用数学归纳法证明:【例23】 是否存在常数a、b、c,使等式对一切正整数n都成立?证明你的结论【例24】 在数列中,(1)写出;(2)求数列的通项公式【例25】 用数学归纳法证明:【例26】 用数学归纳法证明:(); () ; 【例27】 对于的自然数,证明:【例28】 已知,求证:对任意大于1的自然数,题型四:数列中的数学归纳法【例2

    5、9】 设均为正数,且,求证:当n2的时候,【例30】 已知数列中,求数列的通项公式.【例31】 在数列中,是它的前项和,当时,成等比数列,求数列的通项公式【例32】 设整数数列满足,且证明:任意正整数, 是一个整数的平方【例33】 由正实数组成的数列满足:证明:对任意,都有【例34】 实数数列定义如下,已知证明:对任意,;问有多少个不同的,使得【例35】 两个实数数列、满足:,证明:时,【例36】 在数列中,若它的前项和计算的值;猜想的表达式,并用数学归纳法证明你的结论【例37】 已知函数,设数列满足,数列满足,用数学归纳法证明【例38】 设数列,中的每一项都不为证明:为等差数列的充分必要条件是:对任何,都有题型五:其他类型题【例39】 已知函数,满足条件:; ; ;当时,有. (1) 求,的值;(2) 由,的值,猜想的解析式;(3) 证明你猜想的的解析式的正确性.【例40】 数列,()是否存在常数,使得数列是等比数列,若存在求 的值,若不存在,说明理由。()设 ,求证:时,【例41】 已知数列满足:,()求的值;()设,试求数列的通项公式;()对于任意的正整数,试讨论与的大小关系7智康高中数学.板块三.数学归纳法.题库.学生版

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:推理与证明.板块三.数学归纳法.学生版.doc
    链接地址:https://www.163wenku.com/p-357192.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库