12.1合情推理与演绎推理.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《12.1合情推理与演绎推理.docx》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 12.1 合情 推理 演绎 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、1合情推理(1)归纳推理定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳)特点:由部分到整体、由个别到一般的推理(2)类比推理定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比)特点:由特殊到特殊的推理(3)合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理2演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推
2、理简言之,演绎推理是由一般到特殊的推理(2)“三段论”是演绎推理的一般模式,包括:大前提已知的一般原理;小前提所研究的特殊情况;结论根据一般原理,对特殊情况做出的判断【思考辨析】判断下列结论是否正确(请在括号中打“”或“”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确()(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理()(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适()(4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的()(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是
3、ann(nN*)()(6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确()1观察下列各式:ab1,a2b23,a3b34,a4b47,a5b511,则a10b10等于()A28 B76C123 D199答案C解析从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,依据此规律,a10b10123.2下面几种推理过程是演绎推理的是()A在数列an中,a11,an(an1)(n2),由此归纳数列an的通项公式B由平面三角形的性质,推测空间四面体性质C两直线平行,同旁内角互补,如果A和B是两条平行直线与第三条直线形成的同旁内角,则AB180D
4、某校高二共10个班,1班51人,2班53人,3班52人,由此推测各班都超过50人答案C解析A、D是归纳推理,B是类比推理,C符合三段论模式,故选C.3(2017济南调研)类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论:垂直于同一个平面的两条直线互相平行;垂直于同一条直线的两条直线互相平行;垂直于同一个平面的两个平面互相平行;垂直于同一条直线的两个平面互相平行则正确的结论是_答案解析显然正确;对于,在空间中垂直于同一条直线的两条直线可以平行,也可以异面或相交;对于,在空间中垂直于同一个平面的两个平面可以平行,也可以相交4(教材改编)在等差数列an中,若a100,则
5、有a1a2ana1a2a19n (n19,nN*)成立,类比上述性质,在等比数列bn中,若b91,则存在的等式为_答案b1b2bnb1b2b17n(n17,nN*)解析利用类比推理,借助等比数列的性质,bb1nb17n,可知存在的等式为b1b2bnb1b2b17n(naf(b)bf(a)(1)试证明:f(x)为R上的单调增函数;(2)若x,y为正实数且4,比较f(xy)与f(6)的大小(1)证明设x1,x2R,且x1x1f(x2)x2f(x1),x1f(x1)f(x2)x2f(x2)f(x1)0,f(x2)f(x1)(x2x1)0,x10,f(x2)f(x1)f(x)为R上的单调增函数(2)解
6、x,y为正实数,且4,xy(xy)()(13)(132),当且仅当即时取等号,f(x)在R上是增函数,且xy6,f(xy)f(6)思维升华演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提(1)某国家流传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅”结论显然是错误的,是因为()A大前提错误 B小前提错误C推理形式错误 D非以上错误(2)(2016洛阳模拟)下列四个推导过程符合演绎推理三段论形式且推理正确的是()A大前提:无限不循环小数
7、是无理数;小前提:是无理数;结论:是无限不循环小数B大前提:无限不循环小数是无理数;小前提:是无限不循环小数;结论:是无理数C大前提:是无限不循环小数;小前提:无限不循环小数是无理数;结论:是无理数D大前提:是无限不循环小数;小前提:是无理数;结论:无限不循环小数是无理数答案(1)C(2)B解析(1)因为大前提“鹅吃白菜”,不是全称命题,大前提本身正确,小前提“参议员先生也吃白菜”本身也正确,但不是大前提下的特殊情况,鹅与人不能类比,所以不符合三段论推理形式,所以推理形式错误(2)A中小前提不是大前提的特殊情况,不符合三段论的推理形式,故A错误;C、D都不是由一般性命题到特殊性命题的推理,所以
8、C、D都不正确,只有B正确,故选B.10高考中的合情推理问题考点分析合情推理在近年来的高考中,考查频率逐渐增大,题型多为选择、填空题,难度为中档解决此类问题的注意事项与常用方法:(1)解决归纳推理问题,常因条件不足,了解不全面而致误应由条件多列举一些特殊情况再进行归纳(2)解决类比问题,应先弄清所给问题的实质及已知结论成立的缘由,再去类比另一类问题典例(1)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数他们研究过如图所示的三角形数:将三角形数1,3,6,10,记为数列an,将可被5整除的三角形数按从小到大的顺序组成一个新数列bn,可以推测:b2 014是数列an的第_项;b2
展开阅读全文