高考专题突破一 高考中的导数应用问题.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考专题突破一 高考中的导数应用问题.docx》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考专题突破一 高考中的导数应用问题 高考 专题 突破 中的 导数 应用 问题 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、1若函数f(x)在R上可导,且满足f(x)xf(x)0,则()A3f(1)f(3)C3f(1)f(3) Df(1)f(3)答案B解析由于f(x)xf(x),则0恒成立,因此在R上是单调递减函数,f(3)故选B.2若函数f(x)kxln x在区间(1,)上单调递增,则k的取值范围是()A(,2 B(,1C2,) D1,)答案D解析由于f(x)k,f(x)kxln x在区间(1,)上单调递增f(x)k0在(1,)上恒成立由于k,而00时,f(x)在(0,)上单调递减,在(,)上单调递增,所以由题意知f()3,故选D.4已知函数f(x)axln x,x(0,),其中a为实数,f(x)为f(x)的导函
2、数,若f(1)3,则a的值为_答案3解析f(x)a(ln xx)a(ln x1)因为f(1)3,所以f(1)a3.5设函数f(x),g(x),对任意x1,x2(0,),不等式恒成立,则正数k的取值范围是_答案1,)解析因为对任意x1,x2(0,),不等式恒成立,所以.因为g(x),所以g(x)e2x(1x)当0x0;当x1时,g(x)0)当且仅当e2x,即x时取等号,故f(x)min2e.所以,应有,又k0,所以k1.题型一利用导数研究函数性质例1(2015课标全国)已知函数f(x)ln xa(1x)(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a2时,求a的取值范围解(
3、1)f(x)的定义域为(0,),f(x)a.若a0,则f(x)0,所以f(x)在(0,)上单调递增若a0,则当x时,f(x)0;当x时,f(x)0.所以f(x)在上单调递增,在上单调递减(2)由(1)知,当a0时,f(x)在(0,)无最大值;当a0时,f(x)在x取得最大值,最大值为flnaln aa1.因此f2a2等价于ln aa10.令g(a)ln aa1,则g(a)在(0,)上单调递增,g(1)0.于是,当0a1时,g(a)0;当a1时,g(a)0.因此,a的取值范围是(0,1)思维升华利用导数主要研究函数的单调性、极值、最值已知f(x)的单调性,可转化为不等式f(x)0或f(x)0在单
4、调区间上恒成立问题;含参函数的最值问题是高考的热点题型,解此类题的关键是极值点与给定区间位置关系的讨论,此时要注意结合导函数图象的性质进行分析已知aR,函数f(x)(x2ax)ex (xR,e为自然对数的底数)(1)当a2时,求函数f(x)的单调递增区间;(2)若函数f(x)在(1,1)上单调递增,求a的取值范围解(1)当a2时,f(x)(x22x)ex,所以f(x)(2x2)ex(x22x)ex(x22)ex.令f(x)0,即(x22)ex0,因为ex0,所以x220,解得x0,所以x2(a2)xa0对x(1,1)都成立,即a(x1)对x(1,1)都成立令y(x1),则y10.所以y(x1)
5、在(1,1)上单调递增,所以y0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,上仅有一个零点(1)解函数的定义域为(0,)由f(x)kln x(k0),得f(x)x.由f(x)0,解得x(负值舍去)f(x)与f(x)在区间(0,)上随x的变化情况如下表:x(0,)(,)f(x)0f(x)所以,f(x)的单调递减区间是(0,),单调递增区间是(,)f(x)在x处取得极小值f().(2)证明由(1)知,f(x)在区间(0,)上的最小值为f().因为f(x)存在零点,所以0,从而ke,当ke时,f(x)在区间(1,上单调递减且f()0,所以x是f(x)在区
6、间(1,上的唯一零点当ke时,f(x)在区间(0,)上单调递减且f(1)0,f()0,所以f(x)在区间(1,上仅有一个零点综上可知,若f(x)存在零点,则f(x)在区间(1,上仅有一个零点思维升华函数零点问题一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一已知函数f(x)x33x2ax2,曲线yf(x)在点(0,2)处的切线与x轴交点的横坐标为2.(1)求a;(2)证明:当k0.当x0时,g(x)3x26x1k0,g(x)单调递增,g(1)k10时,令h(x)x33x24,则g(x)h(x)(1k)x
展开阅读全文