书签 分享 收藏 举报 版权申诉 / 17
上传文档赚钱

类型高考专题突破五 高考中的圆锥曲线问题.docx

  • 上传人(卖家):和和062
  • 文档编号:357156
  • 上传时间:2020-03-11
  • 格式:DOCX
  • 页数:17
  • 大小:1.65MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高考专题突破五 高考中的圆锥曲线问题.docx》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高考专题突破五 高考中的圆锥曲线问题 高考 专题 突破 中的 圆锥曲线 问题 下载 _一轮复习_高考专区_数学_高中
    资源描述:

    1、1(2015课标全国)已知A,B为双曲线E的左,右顶点,点M在E上,ABM为等腰三角形,且顶角为120,则E的离心率为()A. B2 C. D.答案D解析如图,设双曲线E的方程为1(a0,b0),则|AB|2a,由双曲线的对称性,可设点M(x1,y1)在第一象限内,过M作MNx轴于点N(x1,0),ABM为等腰三角形,且ABM120,|BM|AB|2a,MBN60,y1|MN|BM|sinMBN2asin 60a,x1|OB|BN|a2acos 602a.将点M(x1,y1)的坐标代入1,可得a2b2,e ,选D.2.如图,已知椭圆C的中心为原点O,F(2,0)为C的左焦点,P为C上一点,满足

    2、|OP|OF|,且|PF|4,则椭圆C的方程为()A.1 B.1C.1 D.1答案B解析设椭圆的标准方程为1(ab0),焦距为2c,右焦点为F,连接PF,如图所示,因为F(2,0)为C的左焦点,所以c2.由|OP|OF|OF|知,FPF90,即FPPF.在RtPFF中,由勾股定理,得|PF|8.由椭圆定义,得|PF|PF|2a4812,所以a6,a236,于是b2a2c236(2)216,所以椭圆的方程为1.3设F为抛物线C:y23x的焦点,过F且倾斜角为30的直线交C于A,B两点,O为坐标原点,则OAB的面积为()A. B. C. D.答案D解析由已知得焦点坐标为F(,0),因此直线AB的方

    3、程为y(x),即4x4y30.方法一联立直线方程与抛物线方程化简得4y212y90,故|yAyB|6.因此SOAB|OF|yAyB|6.方法二联立方程得x2x0,故xAxB.根据抛物线的定义有|AB|xAxBp12,同时原点到直线AB的距离为h,因此SOAB|AB|h.4(2016北京)双曲线1(a0,b0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点,若正方形OABC的边长为2,则a_.答案2解析设B为双曲线的右焦点,如图所示四边形OABC为正方形且边长为2,c|OB|2,又AOB,tan1,即ab.又a2b2c28,a2.5已知双曲线1(a0,b0)和椭圆1有相同

    4、的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为_答案1解析由题意得,双曲线1(a0,b0)的焦点坐标为(,0),(,0),c且双曲线的离心率为2a2,b2c2a23,双曲线的方程为1.题型一求圆锥曲线的标准方程例1已知椭圆E:1(ab0)的右焦点为F(3,0),过点F的直线交E于A、B两点若AB的中点坐标为(1,1),则E的方程为()A.1 B.1C.1 D.1答案D解析设A(x1,y1)、B(x2,y2),所以运用点差法,所以直线AB的斜率为k,设直线方程为y(x3),联立直线与椭圆的方程得(a2b2)x26b2x9b2a40,所以x1x22,又因为a2b29,解得b29,a2

    5、18.思维升华求圆锥曲线的标准方程是高考的必考题型,主要利用圆锥曲线的定义、几何性质,解得标准方程中的参数,从而求得方程(2015天津)已知双曲线1(a0,b0 )的一个焦点为F(2,0),且双曲线的渐近线与圆(x2)2y23相切,则双曲线的方程为()A.1 B.1 C.y21 Dx21答案D解析双曲线1的一个焦点为F(2,0),则a2b24,双曲线的渐近线方程为yx,由题意得,联立解得b,a1,所求双曲线的方程为x21,选D.题型二圆锥曲线的几何性质例2(1)(2015湖南)若双曲线1的一条渐近线经过点(3,4),则此双曲线的离心率为()A. B. C. D.(2)(2016天津)设抛物线(

    6、t为参数,p0)的焦点为F,准线为l.过抛物线上一点A作l的垂线,垂足为B.设C,AF与BC相交于点E.若|CF|2|AF|,且ACE的面积为3,则p的值为_答案(1)D(2)解析(1)由条件知yx过点(3,4),4,即3b4a,9b216a2,9c29a216a2,25a29c2,e.故选D.(2)由(p0)消去t可得抛物线方程为y22px(p0),F,|AB|AF|p,可得A(p,p)易知AEBFEC,故SACESACF3ppp23,p26,p0,p.思维升华圆锥曲线的几何性质是高考考查的重点,求离心率、准线、双曲线渐近线,是常考题型,解决这类问题的关键是熟练掌握各性质的定义,及相关参数间

    7、的联系掌握一些常用的结论及变形技巧,有助于提高运算能力已知椭圆1(ab0)与抛物线y22px(p0)有相同的焦点F,P,Q是椭圆与抛物线的交点,若PQ经过焦点F,则椭圆1(ab0)的离心率为_答案1解析因为抛物线y22px(p0)的焦点F为,设椭圆另一焦点为E.当x时,代入抛物线方程得yp,又因为PQ经过焦点F,所以P且PFOF.所以|PE| p,|PF|p,|EF|p.故2a pp,2cp,e1.题型三最值、范围问题例3若直线l:y过双曲线1(a0,b0)的一个焦点,且与双曲线的一条渐近线平行(1)求双曲线的方程;(2)若过点B(0,b)且与x轴不平行的直线和双曲线相交于不同的两点M,N,M

    8、N的垂直平分线为m,求直线m在y轴上的截距的取值范围解(1)由题意,可得c2,所以a23b2,且a2b2c24,解得a,b1.故双曲线的方程为y21.(2)由(1)知B(0,1),依题意可设过点B的直线方程为ykx1(k0),M(x1,y1),N(x2,y2)由得(13k2)x26kx60,所以x1x2,36k224(13k2)12(23k2)00k2,且13k20k2.设MN的中点为Q(x0,y0),则x0,y0kx01,故直线m的方程为y,即yx.所以直线m在y轴上的截距为,由0k2,且k2,得13k2(1,0)(0,1),所以(,4)(4,)故直线m在y轴上的截距的取值范围为(,4)(4

    9、,)思维升华圆锥曲线中的最值、范围问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和均值不等式法、换元法、导数法等方法求最值;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值与范围直线l:xy0与椭圆y21相交于A,B两点,点C是椭圆上的动点,则ABC面积的最大值为_答案解析由得3x22,x,设点A在第一象限,A(,),B(,),|AB|.设与l平行的直线l:yxm与椭圆相切于P点则ABP面积最大由得3x24mx2m220,(4m)243(2m22)0,m.P到AB的距离即为l与l的距离,d.SABC.题型四定值、定点问题例

    10、4(2016全国乙卷)设圆x2y22x150的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(1)证明|EA|EB|为定值,并写出点E的轨迹方程;(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围解(1)因为|AD|AC|,EBAC,故EBDACDADC,所以|EB|ED|,故|EA|EB|EA|ED|AD|.又圆A的标准方程为(x1)2y216,从而|AD|4,所以|EA|EB|4.由题设得A(1,0),B(1,0),|AB|2,由椭圆定义可得点E的轨迹方程为

    11、1(y0)(2)当l与x轴不垂直时,设l的方程为yk(x1)(k0),M(x1,y1),N(x2,y2)由得(4k23)x28k2x4k2120.则x1x2,x1x2,所以|MN|x1x2|.过点B(1,0)且与l垂直的直线m:y(x1),点A到m的距离为,所以|PQ|24.故四边形MPNQ的面积S|MN|PQ|12.可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,8)当l与x轴垂直时,其方程为x1,|MN|3,|PQ|8,四边形MPNQ的面积为12.综上,四边形MPNQ面积的取值范围为12,8)思维升华求定点及定值问题常见的方法有两种(1)从特殊入手,求出定值,再证明这个值与变

    12、量无关(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值(2016北京)已知椭圆C:1(ab0)的离心率为,A(a,0),B(0,b),O(0,0),OAB的面积为1.(1)求椭圆C的方程;(2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN|BM|为定值(1)解由已知,ab1.又a2b2c2,解得a2,b1,c.椭圆方程为y21.(2)证明由(1)知,A(2,0),B(0,1)设椭圆上一点P(x0,y0),则y1.当x00时,直线PA方程为y(x2),令x0,得yM.从而|BM|1yM|.直线PB方程为yx1.令y0,得xN.|AN|2xN|.

    13、|AN|BM|4.当x00时,y01,|BM|2,|AN|2,|AN|BM|4.故|AN|BM|为定值题型五探索性问题例5(2015广东)已知过原点的动直线l与圆C1:x2y26x50相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:yk(x4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由解(1)圆C1:x2y26x50化为(x3)2y24,圆C1的圆心坐标为(3,0)(2)设M(x,y),A,B为过原点的直线l与圆C1的交点,且M为AB的中点,由圆的性质知MC1MO,0.又(3x,y),(x,y)

    14、,由向量的数量积公式得x23xy20.易知直线l的斜率存在,设直线l的方程为ymx,当直线l与圆C1相切时,d2,解得m.把相切时直线l的方程代入圆C1的方程,化简得9x230x250,解得x.当直线l经过圆C1的圆心时,M的坐标为(3,0)又直线l与圆C1交于A,B两点,M为AB的中点,x3.点M的轨迹C的方程为x23xy20,其中x3.(3)由题意知直线L表示过定点(4,0),斜率为k的直线,把直线L的方程代入轨迹C的方程x23xy20,其中x3,化简得(k21)x2(38k2)x16k20,其中x3,记f(x)(k21)x2(38k2)x16k2,其中0时,若x3是方程的解,则f(3)0

    15、k0另一根为x0,故在区间上有且仅有一个根,满足题意;若x是方程的解,则f0k另外一根为x,3,故在区间上有且仅有一根,满足题意;若x3和x均不是方程的解,则方程在区间上有且仅有一个根,只需ff(3)0kb0)以抛物线y28x的焦点为顶点,且离心率为.(1)求椭圆E的方程;(2)若直线l:ykxm与椭圆E相交于A,B两点,与直线x4相交于Q点,P是椭圆E上一点且满足(其中O为坐标原点),试问在x轴上是否存在一点T,使得为定值?若存在,求出点T的坐标及的值;若不存在,请说明理由解(1)抛物线y28x的焦点为椭圆E的顶点,即a2.又,故c1,b.椭圆E的方程为1.(2)设A(x1,y1),B(x2

    16、,y2),P(x1x2,y1y2),联立得(4k23)x28kmx4m2120.由根与系数的关系,得x1x2,y1y2k(x1x2)2m.将P代入椭圆E的方程,得1,整理,得4m24k23.设T(t,0),Q(4,m4k),(4t,m4k),.即.4k234m2,.要使为定值,只需2为定值,则1t0,t1,在x轴上存在一点T(1,0),使得为定值.1(2015陕西)如图,椭圆E:1(ab0),经过点A(0,1),且离心率为.(1)求椭圆E的方程;(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为2.(1)解由题设知,b1,结合a

    17、2b2c2,解得a,所以椭圆的方程为y21.(2)证明由题设知,直线PQ的方程为yk(x1)1(k2),代入y21,得(12k2)x24k(k1)x2k(k2)0,由已知0,设P(x1,y1),Q(x2,y2),x1x20,则x1x2,x1x2,从而直线AP,AQ的斜率之和 kAPkAQ2k(2k)2k(2k)2k(2k)2k2(k1)2.2已知双曲线C:1(a0,b0)的焦距为3,其中一条渐近线的方程为xy0.以双曲线C的实轴为长轴,虚轴为短轴的椭圆记为E,过原点O的动直线与椭圆E交于A,B两点(1)求椭圆E的方程;(2)若点P为椭圆E的左顶点,2,求|2|2的取值范围解(1)由双曲线1的焦

    18、距为3,得c,a2b2.由题意知,由解得a23,b2,椭圆E的方程为y21.(2)由(1)知P(,0)设G(x0,y0),由2,得(x0,y0)2(x0,y0)即解得G(,0)设A(x1,y1),则B(x1,y1),|2|2(x1)2y(x1)2y2x2y2x3xx.又x1,x0,3,x,|2|2的取值范围是,3(2016北京顺义尖子生素质展示)已知椭圆1的左顶点为A,右焦点为F,过点F的直线交椭圆于B,C两点(1)求该椭圆的离心率;(2)设直线AB和AC分别与直线x4交于点M,N,问:x轴上是否存在定点P使得MPNP?若存在,求出点P的坐标;若不存在,说明理由解(1)由椭圆方程可得a2,b,

    19、从而椭圆的半焦距c1.所以椭圆的离心率为e.(2)依题意,直线BC的斜率不为0,设其方程为xty1.将其代入1,整理得(43t2)y26ty90.设B(x1,y1),C(x2,y2),所以y1y2,y1y2.易知直线AB的方程是y(x2),从而可得M(4,),同理可得N(4,)假设x轴上存在定点P(p,0)使得MPNP,则有0.所以(p4)20.将x1ty11,x2ty21代入上式,整理得(p4)20,所以(p4)20,即(p4)290,解得p1或p7.所以x轴上存在定点P(1,0)或P(7,0),使得MPNP.4如图,已知M(x1,y1)是椭圆1(ab0)上任意一点,F为椭圆的右焦点(1)若椭圆的离心率为e,试用e,a,x1表示|MF|,并求|MF|的最值;(2)已知直线m与圆x2y2b2相切,并与椭圆交于A,B两点,且直线m与圆的切点Q在y轴右侧,若a2,求ABF的周长解(1)设F(c,0),则|MF|,又1,则yb2,所以|MF| ,又ax1a且0e0),连接OQ,OA,在RtOQA中,|AQ|2xyb2,又yb2,所以|AQ|2,则|AQ|,同理|BQ|,所以|AB|AF|BF|2ax0x22a,又a2,所以所求周长为4.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高考专题突破五 高考中的圆锥曲线问题.docx
    链接地址:https://www.163wenku.com/p-357156.html
    和和062
         内容提供者      个人认证 实名认证
    相关资源 更多
  • 2025高考数学一轮复习-第8章-第8节 直线与圆锥曲线ppt课件.pptx2025高考数学一轮复习-第8章-第8节 直线与圆锥曲线ppt课件.pptx
  • 2025高考数学一轮复习-第1章-第5节 一元二次方程、不等式ppt课件.pptx2025高考数学一轮复习-第1章-第5节 一元二次方程、不等式ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(四)三角函数、解三角形ppt课件.pptx2025高考数学一轮复习-多选题加练(四)三角函数、解三角形ppt课件.pptx
  • 2025高考数学一轮复习-第10章-第7节 离散型随机变量及其分布列、数字特征ppt课件.pptx2025高考数学一轮复习-第10章-第7节 离散型随机变量及其分布列、数字特征ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第一课时 不等式恒(能)成立问题ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第一课时 不等式恒(能)成立问题ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(五)平面向量ppt课件.pptx2025高考数学一轮复习-多选题加练(五)平面向量ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第一课时 求值与证明ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第一课时 求值与证明ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第二课时 定点、定线与定值ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第二课时 定点、定线与定值ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(三)导数及其应用ppt课件.pptx2025高考数学一轮复习-多选题加练(三)导数及其应用ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第二课时 构造函数证明不等式ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第二课时 构造函数证明不等式ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第三课时 利用导数研究函数的零点ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第三课时 利用导数研究函数的零点ppt课件.pptx
  • 2025高考数学一轮复习-第10章-第9节 概率与统计的综合问题ppt课件.pptx2025高考数学一轮复习-第10章-第9节 概率与统计的综合问题ppt课件.pptx
  • 2025高考数学一轮复习-第10章-第8节 二项分布、超几何分布与正态分布ppt课件.pptx2025高考数学一轮复习-第10章-第8节 二项分布、超几何分布与正态分布ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(九)统计与成对数据的统计分析ppt课件.pptx2025高考数学一轮复习-多选题加练(九)统计与成对数据的统计分析ppt课件.pptx
  • Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库