13.2 第2课时 不等式的证明.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《13.2 第2课时 不等式的证明.docx》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 13.2 第2课时 不等式的证明 课时 不等式 证明 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、第2课时不等式的证明1不等式证明的方法(1)比较法:作差比较法:知道abab0,ababb只要证明ab0即可,这种方法称为作差比较法作商比较法:由ab01且a0,b0,因此当a0,b0时,要证明ab,只要证明1即可,这种方法称为作商比较法(2)综合法:从已知条件出发,利用不等式的有关性质或定理,经过推理论证,最终推导出所要证明的不等式成立,这种证明方法叫综合法即“由因导果”的方法(3)分析法:从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等),从而得出要证的不等式成立,这种证明方法叫分析法即“执果索因”的方法(4)反证法和放缩法:先假设要
2、证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,这种方法叫做反证法在证明不等式时,有时要把所证不等式的一边适当地放大或缩小,此利于化简并使它与不等式的另一边的关系更为明显,从而得出原不等式成立,这种方法称为放缩法(5)数学归纳法:一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用以下两个步骤:证明当nn0时命题成立;假设当nk (kN*,且kn0)时命题成立,证明nk1时命题也成立在完成了这两个步骤后,就可以断定命题对于
3、不小于n0的所有正整数都成立这种证明方法称为数学归纳法2几个常用基本不等式(1)柯西不等式:柯西不等式的代数形式:设a,b,c,d都是实数,则(a2b2)(c2d2)(acbd)2(当且仅当adbc时,等号成立)柯西不等式的向量形式:设,是两个向量,则|,当且仅当是零向量,或存在实数k,使k时,等号成立柯西不等式的三角不等式:设x1,y1,x2,y2,x3,y3R,则.柯西不等式的一般形式:设a1,a2,a3,an,b1,b2,b3,bn是实数,则(aaa)(bbb)(a1b1a2b2anbn)2,当且仅当bi0 (i1,2,n)或存在一个数k,使得aikbi (i1,2,n)时,等号成立(2
4、)算术几何平均不等式若a1,a2,an为正数,则,当且仅当a1a2an时,等号成立1设a,b,m,nR,且a2b25,manb5,求的最小值解根据柯西不等式(manb)2(a2b2)(m2n2),得255(m2n2),m2n25,的最小值为.2若a,b,c(0,),且abc1,求的最大值解()2(111)2(121212)(abc)3.当且仅当abc时,等号成立()23.故的最大值为.3设x0,y0,若不等式0恒成立,求实数的最小值解x0,y0,原不等式可化为()(xy)2.2224,当且仅当xy时等号成立min4,即4,4.题型一用综合法与分析法证明不等式例1(1)已知x,y均为正数,且xy
5、,求证:2x2y3;(2)设a,b,c0且abbcca1,求证:abc.证明(1)因为x0,y0,xy0,2x2y2(xy)(xy)(xy)33,所以2x2y3.(2)因为a,b,c0,所以要证abc,只需证明(abc)23.即证:a2b2c22(abbcca)3,而abbcca1,故需证明:a2b2c22(abbcca)3(abbcca)即证:a2b2c2abbcca.而abbccaa2b2c2(当且仅当abc时等号成立)成立所以原不等式成立思维升华用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法综合法往往是分析法的逆过程,表述简单、条理清
展开阅读全文