书签 分享 收藏 举报 版权申诉 / 16
上传文档赚钱

类型11.2古典概型.docx

  • 上传人(卖家):和和062
  • 文档编号:357146
  • 上传时间:2020-03-11
  • 格式:DOCX
  • 页数:16
  • 大小:1.38MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《11.2古典概型.docx》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    11.2 古典 下载 _一轮复习_高考专区_数学_高中
    资源描述:

    1、1基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和2古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等3如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包括的结果有m个,那么事件A的概率P(A).4古典概型的概率公式P(A).【思考辨析】判断下列结论是否正确(请在括号中打“”或“”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”()(2)掷一

    2、枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件()(3)从市场上出售的标准为5005 g的袋装食盐中任取一袋,测其重量,属于古典概型()(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为.()(5)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0.2.()(6)在古典概型中,如果事件A中基本事件构成集合A,且集合A中的元素个数为n,所有的基本事件构成集合I,且集合I中元素个数为m,则事件A的概率为.()1从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概

    3、率是()A. B. C. D.答案B解析基本事件的总数为6,构成“取出的2个数之差的绝对值为2”这个事件的基本事件的个数为2,所以所求概率P,故选B.2(2016北京)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B. C. D.答案B解析从甲、乙等5名学生中随机选2人共有10种情况,甲被选中有4种情况,则甲被选中的概率为.3(2015课标全国)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A. B. C. D.答案C解析从1,2,3,4,5中任取3个不同的数共有如下10种不

    4、同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为.故选C.4从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为_答案解析取两个点的所有情况为10种,所有距离不小于正方形边长的情况有6种,概率为.5(教材改编)同时掷两个骰子,向上点数不相同的概率为_答案解析掷两个骰子一次,向上的点数共6636(种)可能的结果,其中点数相同的结果共有6个,所以点数不同的概率P1.题型一基本事件与古典概型的判断例1(

    5、1)有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y表示第2颗正四面体玩具出现的点数试写出:试验的基本事件;事件“出现点数之和大于3”包含的基本事件;事件“出现点数相等”包含的基本事件(2)袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解(1)这个试验

    6、的基本事件为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)事件“出现点数之和大于3”包含的基本事件为(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)事件“出现点数相等”包含的基本事件为(1,1),(2,2),(3,3),(4,4)(2)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法又因为所有球大小相同,因此每个球被摸中的可能性相等,

    7、故以球的编号为基本事件的概率模型为古典概型由于11个球共有3种颜色,因此共有3个基本事件,分别记为A:“摸到白球”,B:“摸到黑球”,C:“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为,而白球有5个,故一次摸球摸到白球的可能性为,同理可知摸到黑球、红球的可能性均为,显然这三个基本事件出现的可能性不相等,所以以颜色为划分基本事件的依据的概率模型不是古典概型思维升华一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点有限性和等可能性,只有同时具备这两个特点的概型才是古典概型下列试验中,古典概型的个数为()向上抛一枚质地不均匀的硬币,观察正面向上的概率;向正方形A

    8、BCD内,任意抛掷一点P,点P恰与点C重合;从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率;在线段0,5上任取一点,求此点小于2的概率A0 B1 C2 D3答案B解析中,硬币质地不均匀,不是等可能事件,所以不是古典概型;的基本事件都不是有限个,不是古典概型;符合古典概型的特点,是古典概型题型二古典概型的求法例2(1)(2015江苏)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为_答案解析设取出的2只球颜色不同为事件A.基本事件有:(白,红),(白,黄),(白,黄),(红,黄),(红,黄),(黄,黄)共6种,事

    9、件A包含5种故P(A).(2)(2016山东)某儿童乐园在“六一”儿童节推出了一项趣味活动参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数设两次记录的数分别为x,y.奖励规则如下:a若xy3,则奖励玩具一个;b若xy8,则奖励水杯一个;c其余情况奖励饮料一瓶假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动求小亮获得玩具的概率;请比较小亮获得水杯与获得饮料的概率的大小,并说明理由解用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间与点集S(x,y)|xN,yN,1x4,1y4一一对应因为S中元素的个数是4416,所以基本事件总数n16

    10、.记“xy3”为事件A,则事件A包含的基本事件共5个,即(1,1),(1,2),(1,3),(2,1),(3,1)所以P(A),即小亮获得玩具的概率为.记“xy8”为事件B,“3xy8”为事件C.则事件B包含的基本事件共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)所以P(B).事件C包含的基本事件共5个,即(1,4),(2,2),(2,3),(3,2),(4,1)所以P(C).因为,所以小亮获得水杯的概率大于获得饮料的概率引申探究1本例(1)中,若将4个球改为颜色相同,标号分别为1,2,3,4的四个小球,从中一次取两球,求标号和为奇数的概率解基本事件数仍为6.

    11、设标号和为奇数为事件A,则A包含的基本事件为(1,2),(1,4),(2,3),(3,4),共4种,所以P(A).2本例(1)中,若将条件改为有放回地取球,取两次,求两次取球颜色相同的概率解基本事件为(白,白),(白,红),(白,黄),(白,黄),(红,红),(红,白),(红,黄),(红,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),共16种,其中颜色相同的有6种,故所求概率为P.思维升华求古典概型的概率的关键是求试验的基本事件的总数和事件A包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树状图法,具体

    12、应用时可根据需要灵活选择(1)(2016全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A. B. C. D.答案C解析从4种颜色的花中任选2种种在一个花坛中,余下2种种在另一个花坛,有(红黄),(白紫),(白紫),(红黄),(红白),(黄紫),(黄紫),(红白),(红紫),(黄白),(黄白),(红紫),共6种种法,其中红色和紫色不在一个花坛的种法有(红黄),(白紫),(白紫),(红黄),(红白),(黄紫),(黄紫),(红白),共4种,故所求概率为P,故选C.(2)某中学调查了某班全部45名同学

    13、参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230从该班随机选1名同学,求该同学至少参加上述一个社团的概率;在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率解由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有453015(人),所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P.从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成

    14、的基本事件有A1,B1,A1,B2,A1,B3,A2,B1,A2,B2,A2,B3,A3,B1,A3,B2,A3,B3,A4,B1,A4,B2,A4,B3,A5,B1,A5,B2,A5,B3,共15个根据题意,这些基本事件的出现是等可能的,事件“A1被选中且B1未被选中”所包含的基本事件有A1,B2,A1,B3,共2个因此,A1被选中且B1未被选中的概率为P.题型三古典概型与统计的综合应用例3(2015安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:40,50),50,60),80,9

    15、0),90,100(1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在40,60)的受访职工中,随机抽取2人,求此2人的评分都在40,50)的概率解(1)因为(0.004a0.0180.02220.028)101,所以a0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.0220.018)100.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在50,60)的有500.006103(人),记为A1,A2,A3;受访职工中评分在40,50)的有500.004102(人),记为B1,B

    16、2,从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是A1,A2,A1,A3,A1,B1,A1,B2,A2,A3,A2,B1,A2,B2,A3,B1,A3,B2,B1,B2又因为所抽取2人的评分都在40,50)的结果有1种,即B1,B2,故所求的概率为P.思维升华有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点概率与统计结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出信息,只要能够从题中提炼出需要的信息,则此类问题即可解决海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所

    17、示工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区ABC数量50150100(1)求这6件样品中来自A,B,C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率解(1)因为样本容量与总体中的个体数的比是,所以样本中包含三个地区的个体数量分别是501,1503,1002.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为A,B1,A,B2,A,B3,A,C1,A,C2,B1,B2,B1,

    18、B3,B1,C1,B1,C2,B2,B3,B2,C1,B2,C2,B3,C1,B3,C2,C1,C2,共15个每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有B1,B2,B1,B3,B2,B3,C1,C2,共4个所以P(D),即这2件商品来自相同地区的概率为.六审细节更完善典例(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n

    19、m2的概率(1)基本事件为取两个球(两球一次取出,不分先后,可用集合的形式表示)把取两个球的所有结果列举出来1,2,1,3,1,4,2,3,2,4,3,4两球编号之和不大于4(注意:和不大于4,应为小于4或等于4)1,2,1,3利用古典概型概率公式求解P(2)两球分两次取,且有放回(两球的编号记录是有次序的,用坐标的形式表示)基本事件的总数可用列举法表示(1,1),(1,2),(1,3),(1,4)(2,1),(2,2),(2,3),(2,4)(3,1),(3,2),(3,3),(3,4)(4,1),(4,2),(4,3),(4,4)(注意细节,m是第一个球的编号,n是第2个球的编号)nm2的

    20、情况较多,计算复杂(将复杂问题转化为简单问题)计算nm2的概率nm2的所有情况为(1,3),(1,4),(2,4)P1(注意细节,P1是nm2的概率,需转化为其对立事件的概率)nm2的概率为1P1.规范解答解(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1,2,1,3,1,4,2,3,2,4,3,4,共6个从袋中取出的球的编号之和不大于4的事件有1,2,1,3,共2个因此所求事件的概率P.4分(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2

    21、,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个6分又满足条件nm2的事件为(1,3),(1,4),(2,4),共3个,所以满足条件nm2的事件的概率为P1.10分故满足条件n0,所以f(x)在R上递增,若f(x)在1,2上有零点,则需经验证有(1,2),(1,4),(1,8),(2,4),(2,8),(2,12),(3,4),(3,8),(3,12),(4,8),(4,12),共11对满足条件,而总的情况有16种,故所求概率为.5连掷两次骰子分别得到点数m,n,则向量(m,n)与向量(1,1)的夹角90的概率是()A. B. C

    22、. D.答案A解析(m,n)(1,1)mnn.基本事件总共有6636(个),符合要求的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,4),(6,1),(6,5),共1234515(个)P,故选A.6(2016哈尔滨模拟)在平面直角坐标系中,从下列五个点:A(0,0),B(2,0),C(1,1),D(0,2),E(2,2)中任取三个,这三点能构成三角形的概率是()A. B. C. D1答案C解析从5个点中取3个点,列举得ABC,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE,共10个基本事件,而其中ACE,BCD两种情况三点共

    23、线,其余8个均符合题意,故能构成三角形的概率为.7从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于()A. B. C. D.答案D解析如图所示,从正六边形ABCDEF的6个顶点中随机选4个顶点,可以看作随机选2个顶点,剩下的4个顶点构成四边形,有A、B,A、C,A、D,A、E,A、F,B、C,B、D,B、E,B、F,C、D,C、E,C、F,D、E,D、F,E、F,共15种若要构成矩形,只要选相对顶点即可,有A、D,B、E,C、F,共3种,故其概率为.8若A、B为互斥事件,P(A)0.4,P(AB)0.7,则P(B)_.答案0.3解析因为A、B为互斥事件,所以P(

    24、AB)P(A)P(B),故P(B)P(AB)P(A)0.70.40.3.9(2017成都月考)如右图的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为_答案0.3解析依题意,记题中的被污损数字为x,若甲的平均成绩不超过乙的平均成绩,则有(8921)(53x5)0,x7,即此时x的可能取值是7,8,9,因此甲的平均成绩不超过乙的平均成绩的概率P0.3.10连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),记“两次向上的数字之和等于m”为事件A,则P(A)最大时,m_.答案7解析112,123,134,145,156,167,

    25、213,224,235,246,257,268,依次列出m的可能取值,知7出现次数最多11设连续掷两次骰子得到的点数分别为m,n,令平面向量a(m,n),b(1,3)(1)求事件“ab”发生的概率;(2)求事件“|a|b|”发生的概率解(1)由题意知,m1,2,3,4,5,6,n1,2,3,4,5,6,故(m,n)所有可能的取法共36种因为ab,所以m3n0,即m3n,有(3,1),(6,2),共2种,所以事件ab发生的概率为.(2)由|a|b|,得m2n210,有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6种,其概率为.12甲、乙两人用4张扑克牌(分别是红桃2

    26、,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张(1)设(i,j)表示甲、乙抽到的牌的牌面数字(如果甲抽到红桃2,乙抽到红桃3,记为(2,3),写出甲、乙两人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽到的牌的牌面数字比3大的概率是多少?(3)甲、乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜,你认为此游戏是否公平?请说明理由解(1)方片4用4表示,则甲、乙两人抽到的牌的所有情况为(2,3),(2,4),(2,4),(3,2),(3,4),(3,4),(4,2),(4,3),(4,4),(4,2),(4,3),(4

    27、,4),共12种不同的情况(2)甲抽到3,乙抽到的牌只能是2,4,4,因此乙抽到的牌的牌面数字大于3的概率为.(3)甲抽到的牌的牌面数字比乙大,有(3,2),(4,2),(4,3),(4,2),(4,3),共5种情况甲胜的概率为P1,乙胜的概率为P2.因为,所以此游戏不公平*13.(2015四川)一辆小客车上有5个座位,其座位号为1,2,3,4,5.乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5,他们按照座位号从小到大的顺序先后上车乘客P1因身体原因没有坐自己的1号座位,这时司机要求余下的乘客按以下规则就座:如果自己的座位空着,就只能坐自己的座位;如果自己的座位已有乘客就座,

    28、就在这5个座位的剩余空位中任意选择座位(1)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法下表给出了其中两种坐法,请填入余下两种坐法(将乘客就座的座位号填入表中空格处);乘客P1P2P3P4P5座位号3214532451(2)若乘客P1坐到了2号座位,其他的乘客按规则就座,求乘客P5坐到5号座位的概率解(1)余下两种坐法如下表所示: 乘客P1P2P3P4P5座位号3241532541(2)若乘客P1坐到了2号座位,其他乘客按规则就座,则所有可能的坐法可用下表表示: 乘客P1P2P3P4P5座位号2134523145234152345123541243152435125341于是,所有可能的坐法共8种,设“乘客P5坐到5号座位”为事件A,则事件A中的基本事件的个数为4,所以P(A).

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:11.2古典概型.docx
    链接地址:https://www.163wenku.com/p-357146.html
    和和062
         内容提供者      个人认证 实名认证
    相关资源 更多
  • 2025高考数学一轮复习-第8章-第8节 直线与圆锥曲线ppt课件.pptx2025高考数学一轮复习-第8章-第8节 直线与圆锥曲线ppt课件.pptx
  • 2025高考数学一轮复习-第1章-第5节 一元二次方程、不等式ppt课件.pptx2025高考数学一轮复习-第1章-第5节 一元二次方程、不等式ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(四)三角函数、解三角形ppt课件.pptx2025高考数学一轮复习-多选题加练(四)三角函数、解三角形ppt课件.pptx
  • 2025高考数学一轮复习-第10章-第7节 离散型随机变量及其分布列、数字特征ppt课件.pptx2025高考数学一轮复习-第10章-第7节 离散型随机变量及其分布列、数字特征ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第一课时 不等式恒(能)成立问题ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第一课时 不等式恒(能)成立问题ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(五)平面向量ppt课件.pptx2025高考数学一轮复习-多选题加练(五)平面向量ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第一课时 求值与证明ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第一课时 求值与证明ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第二课时 定点、定线与定值ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第二课时 定点、定线与定值ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(三)导数及其应用ppt课件.pptx2025高考数学一轮复习-多选题加练(三)导数及其应用ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第二课时 构造函数证明不等式ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第二课时 构造函数证明不等式ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第三课时 利用导数研究函数的零点ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第三课时 利用导数研究函数的零点ppt课件.pptx
  • 2025高考数学一轮复习-第10章-第9节 概率与统计的综合问题ppt课件.pptx2025高考数学一轮复习-第10章-第9节 概率与统计的综合问题ppt课件.pptx
  • 2025高考数学一轮复习-第10章-第8节 二项分布、超几何分布与正态分布ppt课件.pptx2025高考数学一轮复习-第10章-第8节 二项分布、超几何分布与正态分布ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(九)统计与成对数据的统计分析ppt课件.pptx2025高考数学一轮复习-多选题加练(九)统计与成对数据的统计分析ppt课件.pptx
  • Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库