世纪金榜二轮专题辅导与练习专题四第一讲课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《世纪金榜二轮专题辅导与练习专题四第一讲课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 世纪 金榜 二轮 专题 辅导 练习 第一 讲课
- 资源描述:
-
1、专题四 数列第一讲 等差、等比数列的概念与性质一、主干知识一、主干知识1.1.等差数列的定义:等差数列的定义:aan n 为等差数列为等差数列_(nN_(nN*,d d为常数为常数).).2.2.等比数列的定义:等比数列的定义:aan n 为等比数列为等比数列_(_(其中其中nNnN*,a,an n0,q0,q为不为零为不为零的常数的常数).).a an+1n+1-a-an n=d=dn 1naqa3.3.等差、等比中项:等差、等比中项:(1)(1)若若x,A,yx,A,y成等差数列成等差数列A A为为x x,y y的等差中项的等差中项2A=_.2A=_.(2)(2)若若x,G,yx,G,y成
2、等比数列成等比数列G G为为x,yx,y的等比中项的等比中项G G2 2=_.=_.4.4.数列数列aan n 的前的前n n项和项和S Sn n与通项与通项a an n的关系式:的关系式:a an n=x+yx+yxyxy1S,n1,_,n2.S Sn n-S-Sn-1n-1 二、必记公式二、必记公式等等 差差 数数 列列等等 比比 数数 列列通项通项公式公式a an n=_=_=a=am m+_(n,mN+_(n,mN*)a an n=_=a=_=am m_(n,mN_(n,mN*)前前n n项和项和公式公式S Sn n=_=_=_=_S Sn n=1nn aa21n n1nad2a a1
3、 1+(n-1)d+(n-1)d(n-m)d(n-m)da a1 1q qn-1n-1q qn-mn-m11nna,q1,aa q_,q 11 qn1a 1 q1 q1.(20131.(2013新课标全国卷新课标全国卷改编改编)等比数列等比数列a an n的前的前n n项和项和为为S Sn n,已知,已知S S3 3=a=a2 2+10a+10a1 1,a a5 5=9=9,则,则a a1 1=_.=_.【解析【解析】由由S S3 3=a=a2 2+10a+10a1 1,得得a a1 1+a+a2 2+a+a3 3=a=a2 2+10a+10a1 1,即即a a3 3=9a=9a1 1,即即a
4、 a1 1q q2 2=9a=9a1 1,解得解得q q2 2=9,=9,又因为又因为a a5 5=9,=9,所以所以a a1 1q q4 4=9,=9,解得解得a a1 1=答案:答案:1.9192.(20132.(2013安徽高考改编安徽高考改编)设设S Sn n为等差数列为等差数列aan n 的前的前n n项和,项和,S S8 8=4a=4a3 3,a,a7 7=2 2,则,则a a9 9=_.=_.【解析【解析】由由S S8 8=4a=4a3 38a8a1 1+d=4+d=4(a(a1 1+2d);+2d);由由a a7 7=-2=-2a a1 1+6d=-2,+6d=-2,联立解得联
5、立解得a a1 1=10,d=-2,=10,d=-2,所以所以a a9 9=a=a1 1+8d=10-16=-6.+8d=10-16=-6.答案:答案:-6-68 723.(20133.(2013江西高考改编江西高考改编)等比数列等比数列x x,3x+33x+3,6x+66x+6,的第四的第四项等于项等于_._.【解析【解析】因为等比数列的前三项为因为等比数列的前三项为x x,3x+33x+3,6x+66x+6,所以,所以(3x+3)(3x+3)2 2=x(6x+6)=x(6x+6),即即x x2 2+4x+3=0+4x+3=0,解得,解得x=-1x=-1或或x=-3.x=-3.当当x=-1x
6、=-1时,时,3x+3=03x+3=0不合题意,舍去不合题意,舍去.故故x=-3.x=-3.此时等比数列的前三项为此时等比数列的前三项为-3-3,-6-6,-12.-12.所以等比数列的首项为所以等比数列的首项为-3-3,公比为,公比为2 2,所以等比数列的第四项为,所以等比数列的第四项为-3-32 24-14-1=-24.=-24.答案:答案:-24-244.(20134.(2013南通模拟南通模拟)各项均为正数的等比数列各项均为正数的等比数列aan n 中,中,a a2 2-a-a1 1=1,=1,当当a a3 3取最小值时,数列取最小值时,数列aan n 的通项公式的通项公式a an n
7、=_.=_.【解析【解析】设公比为设公比为q,q,依题意依题意a a1 1q-aq-a1 1=1,a=1,a1 1=(q1),=(q1),a a3 3=a=a1 1q q2 2=(当且仅当当且仅当q=2q=2时取等号时取等号),a a1 1=1,=1,所以所以a an n=2=2n-1n-1.答案:答案:2 2n-1n-11q122q12 q11q1q124q1q1q1 5.(20135.(2013北京高考北京高考)若等比数列若等比数列aan n 满足满足a a2 2a a4 4=20=20,a a3 3a a5 5=4040,则公比,则公比q=_q=_;前;前n n项和项和S Sn n=_.
8、=_.【解析解析】所以所以a a2 2+a+a4 4=2a=2a1 1+8a+8a1 1=20,=20,所以所以a a1 1=2=2,答案:答案:2 22 2n+1n+12 23524aa40q2aa20,nn 1n2(1 2)S22.1 26.6.等比数列等比数列aan n 的前的前n n项和为项和为S Sn n,若若S S3 3+3S+3S2 2=0,=0,则公比则公比q=q=.【解析【解析】由由S S3 3=-3S=-3S2 2可得可得a a1 1+a+a2 2+a+a3 3=-3(a=-3(a1 1+a+a2 2),),即即a a1 1(1+q+q(1+q+q2 2)=-3a)=-3a
9、1 1(1+q)(1+q)化简整理得化简整理得q q2 2+4q+4=0,+4q+4=0,解得解得q=-2.q=-2.答案:答案:-2-2热点考向热点考向 1 1 等差等差(比比)数列的基本运算数列的基本运算【典例【典例1 1】(1)(2013(1)(2013新课标全国卷新课标全国卷改编改编)设等差数列设等差数列aan n 的的前前n n项和为项和为S Sn n,若若S Sm-1m-1=-2,S=-2,Sm m=0,S=0,Sm+1m+1=3,=3,则则m=_.m=_.(2)(2013(2)(2013湖北高考湖北高考)已知等比数列已知等比数列 a an n 满足:满足:|a|a2 2-a-a3
10、 3|=10,a|=10,a1 1a a2 2a a3 3=125=125求数列求数列 a an n 的通项公式的通项公式;是否存在正整数是否存在正整数m,m,使得使得 若存在若存在,求求m m的最的最小值小值;若不存在若不存在,说明理由说明理由12m1111aaa?【解题探究【解题探究】(1)a(1)an n与与S Sn n的关系是什么的关系是什么?提示:提示:a an n=S=Sn n-S-Sn-1n-1(n2)(n2)(2)(2)怎样求等比数列怎样求等比数列aan n 的首项的首项a a1 1和公比和公比q?q?提示:提示:把已知条件用把已知条件用a a1 1,q,q表示出来表示出来,解
11、方程解方程(组组)即可即可求求 的关键点的关键点()()如何判断数列如何判断数列 的类型的类型?提示:提示:可根据可根据a an n先求出先求出 再判断数列类型再判断数列类型()()怎样确定怎样确定 与与1 1的关系的关系?提示:提示:根据根据 的表达式判断的表达式判断mn 1n1an1an1a,mn 1n1amn 1n1a【解析【解析】(1)(1)由已知得,由已知得,a am m=S=Sm m-S-Sm-1m-1=2,a=2,am+1m+1=S=Sm+1m+1-S-Sm m=3=3,因为数列因为数列aan n 为等差数列,所以为等差数列,所以d=ad=am+1m+1-a-am m=1=1,又
12、因为,又因为S Sm m=0 =0,所以,所以m(am(a1 1+2)=0+2)=0,因为,因为m0m0,所以,所以a a1 1=-2=-2,又又a am m=a=a1 1+(m-1)d=2+(m-1)d=2,解得,解得m=5m=5答案:答案:5 51mm aa2(2)(2)设等比数列设等比数列aan n 的公比为的公比为q,q,则由已知可得则由已知可得解得解得 或或故故a an n=3 3n-1n-1,或,或a an n=-5=-5(-1)(-1)n-1n-1331211a q125,a qa q10,15a,3q31a5,q1,53若若a an n=3 3n-1n-1,则,则故故 是首项为
13、是首项为 公比为公比为 的等比数列,的等比数列,从而从而若若a an n=(=(5)5)(1)1)n n1 1,则,则故故 是首项为是首项为 公比为公比为1 1的等比数列,的等比数列,53n1n13 1()a5 3,n1a35,13mmmn 1n311()1919531()11a1031013n1n111a5,n1a15,从而从而故故综上,对任何正整数综上,对任何正整数m m,总有,总有故不存在正整数故不存在正整数m m,使得,使得 11成立成立mn 1n1,m2k 1,kN*,15a0,m2k,kN*mn 1n11amn 1n11a12m111aaa【方法总结【方法总结】等差等差(比比)数列
14、基本运算中的关注点数列基本运算中的关注点(1)(1)基本量基本量.在等差在等差(比比)数列中数列中,首项首项a a1 1和公差和公差d(d(公比公比q)q)是两个基本量是两个基本量.(2)(2)解题思路解题思路.求公差求公差d(d(公比公比q):q):常用公式常用公式a an n=a=am m+(n+(nm)d(am)d(an n=a=am mq qn nm m););列方程组列方程组:若条件与结论的联系不明显时若条件与结论的联系不明显时,常把条件转化为常把条件转化为关于关于a a1 1和和d(qd(q)的方程组求解的方程组求解,但要注意消元及整体计算但要注意消元及整体计算,以减少以减少计算量
15、计算量.【变式训练【变式训练】设递增等差数列设递增等差数列aan n 的前的前n n项和为项和为S Sn n,已知已知a a3 3=1,a=1,a4 4是是a a3 3和和a a7 7的等比中项的等比中项.(1)(1)求数列求数列aan n 的通项公式的通项公式.(2)(2)求数列求数列aan n 的前的前n n项和项和S Sn n.【解析【解析】(1)(1)在递增等差数列在递增等差数列aan n 中,设首项为中,设首项为a a1 1,公差为,公差为d d(d(d0),0),因为因为224371131aa a,a3d1a6d,a1a2d1,解得解得所以所以a an n=-3+(n-1)=-3+
16、(n-1)2=2n-5.2=2n-5.(2)(2)所以所以S Sn n=n=n2 2-4n.-4n.11a3,a1.d2d0,或舍去2nn32n5Sn4n,2 热点考向热点考向 2 2 等差等差(比比)数列的性质数列的性质【典例典例2 2】(1)(2013(1)(2013天津模拟天津模拟)等差数列等差数列aan n 中中,如果如果a a1 1+a+a4 4+a+a7 7=39,a=39,a3 3+a+a6 6+a+a9 9=27,=27,数列数列aan n 前前9 9项的和为项的和为_._.(2)(2013(2)(2013三门峡模拟三门峡模拟)在等比数列在等比数列aan n 中,若中,若a a
17、3 3a a5 5a a7 7a a9 9a a1111=243,=243,则则 的值为的值为_._.2911aa【解题探究【解题探究】(1)(1)根据根据a a1 1+a+a4 4+a+a7 7=39=39能求的项是能求的项是_,根据根据a a3 3+a+a6 6+a+a9 9=27=27能求的项是能求的项是_._.(2)(2)由由a a3 3a a5 5a a7 7a a9 9a a1111=243=243可求的项是可求的项是_,a a9 92 2与与a a1111之间的关系是之间的关系是_._.a a4 4a a6 6a a7 7a a9 92 2=a=a7 7a a1111【解析【解析
18、】(1)(1)由由a a1 1+a+a4 4+a+a7 7=39,=39,得得3a3a4 4=39,a=39,a4 4=13.=13.由由a a3 3+a+a6 6+a+a9 9=27,=27,得得3a3a6 6=27,a=27,a6 6=9.=9.所以所以答案:答案:9999194699 aa9 aa9139S99.222(2)(2)在等比数列在等比数列aan n 中,中,a a3 3a a5 5a a7 7a a9 9a a1111=243.=243.因为因为a a3 3a a1111=a=a5 5a a9 9=a=a7 72 2,所以所以a a7 75 5=243,=243,所以所以a
19、a7 7=3.=3.结合等比中项的性质可知结合等比中项的性质可知答案答案:3 329711aa3.a【互动探究【互动探究】本例题本例题(1)(1)中条件不变中条件不变,试求试求a a2 2+a+a5 5+a+a8 8的值的值.【解析【解析】由本题解析知由本题解析知a a4 4=13,a=13,a6 6=9,=9,所以所以a a2 2+a+a5 5+a+a8 8=3a=3a5 5=4633aa13933.22【方法总结【方法总结】等差等差(比比)数列的性质盘点数列的性质盘点类型类型等差数列等差数列等比数列等比数列项的项的性质性质2a2ak k=a=am m+a+al(m,k,(m,k,lNN*且
20、且m,k,m,k,l成等差数列成等差数列)a ak k2 2=a=am ma al(m,k,(m,k,lNN*且且m,k,m,k,l成等差数列成等差数列)a am m+a+an n=a=ap p+a+aq q(m,n,p,qN(m,n,p,qN*,且且m+n=p+q)m+n=p+q)a am ma an n=a=ap pa aq q(m,n,p,(m,n,p,qNqN*且且m+n=p+q)m+n=p+q)类型类型等差数列等差数列等比数列等比数列和的和的性质性质当当n n为奇数时:为奇数时:当当n n为偶数时:为偶数时:=q(=q(公比公比)依次每依次每k k项的和项的和:S:Sk k,S S2
21、k2k-S-Sk k,S,S3k3k-S-S2k2k,构成等构成等差数列差数列依次每依次每k k项的和项的和:S:Sk k,S,S2k2k-S Sk k,S,S3k3k-S-S2k2k,构成等比数构成等比数列列(k(k不为偶数且公比不为偶数且公比qq-1)-1)nn 12SnaSS偶奇【变式备选【变式备选】(2013(2013南京模拟南京模拟)设数列设数列aan n 是公差不为是公差不为0 0的等的等差数列,差数列,S Sn n为其前为其前n n项和,若项和,若a a1 12 2+a+a2 22 2=a=a3 32 2+a+a4 42 2,S,S5 5=5=5,则,则a a7 7的值为的值为_
22、._.【解析【解析】设设aan n 的公差为的公差为d,d,则则d0.d0.因为因为a a1 12 2+a+a2 22 2=a=a3 32 2+a+a4 42 2,所以所以a a3 32 2-a-a1 12 2+a+a4 42 2-a-a2 22 2=0.=0.即即(a(a3 3-a-a1 1)(a)(a3 3+a+a1 1)+(a)+(a4 4-a-a2 2)(a)(a4 4+a+a2 2)=0,)=0,2d(a2d(a1 1+a+a2 2+a+a3 3+a+a4 4)=0.)=0.又因为又因为d0d0,所以,所以a a1 1+a+a2 2+a+a3 3+a+a4 4=0=0,S S5 5=
23、5,a=5,a5 5=5.=5.S S5 5=5a=5a3 3=5,=5,所以所以a a3 3=1.=1.而而2a2a5 5=a=a7 7+a+a3 3,所以,所以a a7 7=9.=9.答案:答案:9 915335 aa5 aa22热点考向热点考向 3 3 等差等差(比比)数列的判定与证明数列的判定与证明【典例【典例3 3】(2013(2013无锡模拟无锡模拟)已知各项均为正数的两个数列已知各项均为正数的两个数列aan n 和和bbn n 满足:满足:(1)(1)设设 求证:数列求证:数列 是等差数列是等差数列.(2)(2)若数列若数列aan n 是等比数列,试证其公比等于是等比数列,试证其
展开阅读全文