书签 分享 收藏 举报 版权申诉 / 14
上传文档赚钱

类型2022新人教A版(2019)《高中数学》必修第一册第二章一元二次函数、方程和不等式 检测题(基础卷)(含答案).doc

  • 上传人(卖家):Q123
  • 文档编号:3553010
  • 上传时间:2022-09-16
  • 格式:DOC
  • 页数:14
  • 大小:744KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2022新人教A版(2019)《高中数学》必修第一册第二章一元二次函数、方程和不等式 检测题(基础卷)(含答案).doc》由用户(Q123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高中数学 2022新人教A版2019高中数学必修第一册第二章一元二次函数、方程和不等式 检测题基础卷含答案 2022 新人 2019 必修 一册 第二 一元 二次 函数 方程 不等式 检测 下载 _必修第一册_人教A版(2019)_数学_高中
    资源描述:

    1、第二章一元二次函数、方程和不等式检测题(基础卷)一、单选题1下列命题正确的是( )A若,则B若,则C若,则D若,则2不等式的解集是( )ABC或D3若相异两实数x,y满足,则之值为( )A3B4C5D64设,则( )AMNBMNCMNDMN5函数的最小值为( )A2B4C8D16已知为正实数,且,则的最小值是( )A4B8C16D327已知克糖水中含有克糖,再添加克糖(假设全部溶解),下列不等式中表示糖水变甜的是( )ABCD8已知,且,则的最小值为( )A3B4C6D9二、多选题9下面所给关于x的不等式,其中一定为一元二次不等式的是( )A3x+40Cax2+4x-70Dx2010如果a0,

    2、那么下列不等式中正确的是( )ABCD11在一个限速40的弯道上,甲,乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相撞了.事发后现场测得甲车的刹车距离略超过12,乙车的刹车距离略超过10.又知甲乙两种车型的刹车距离S与车速x之间分别有如下关系:S甲=0.1x+0.01x2,S乙=0.05x+0.005x2.则下列判断错误的是( )A甲车超速B乙车超速C两车均不超速D两车均超速12下列函数中,最小值是4的函数有( )ABCD三、填空题13函数的最小值是_14一般认为,民用住宅窗户面积a与地板面积b的比应不小于,即,而且比值越大采光效果越好,若窗户面积与地板面积同时增加m,采光效果变好还是变

    3、坏?请将你的判断用不等式表示_15给出下列命题:abac2bc2;a|b|a4b4;aba3b3;|a|ba2b2.其中正确的命题序号是_.16已知的解集是,则_.四、解答题17已知一元二次方程的两个实数根为.求值:(1); (2).18()解不等式;()解不等式19已知.(1)当时,求关于的不等式大于0的解集;(2)若不等式的解集为,求实数,的值.20已知,.求(1)的取值范围;(2)的取值范围.21已知不等式的解集为或.(1)求;(2)解不等式.22某企业生产一种机器的固定成本(即固定投入)为0.5万元,但每生产1百台时又需可变成本(即需另增加投入)0.25万元,市场对此商品的需求量为5百

    4、台,销售收入(单位:万元)的函数为,其中x是产品生产并售出的数量(单位:百台)(1)把利润表示为年产量的函数(2)年产量为多少时,企业所得利润最大?(3)年产量为多少时,企业才不亏本(不赔钱)?参考答案1B【分析】对于ACD,通过举反例判断,对于B,利用不等式的性质判断即可【详解】解:对于A,若,则,此时,所以A错误;对于B,因为,所以,所以B正确;对于C,若,则,此时,所以C错误;对于D,若,则,此时,所以D错误,故选:B2C【分析】直接解一元二次不等式即可【详解】不等式,即,解得或,所以解集是或故选:C3D【分析】根据已知条件求得,由此求得所求表达式的值.【详解】两式作差消元得:,反代回去

    5、得:,同理可得:,由同构及韦达定理有:继而有:.故选:D4A【分析】直接利用作差法判断即可【详解】解:因为,所以,故选:A5B【分析】利用基本不等式求解即可【详解】,当且仅当时取得最小值故选:B6B【分析】化简,结合基本不等式,即可求解.【详解】由题意,正实数且,可得,则,当且仅当时,即时等号成立,所以的最小值是.故选:B.7D【分析】根据生活常识可知,糖水变甜即代表糖水中糖的浓度变大,即可解出【详解】因为糖水变甜即代表糖水中糖的浓度变大,所以故选:D【点睛】本题主要考查不等式的基本性质的应用,属于容易题8A【分析】将变形为,再将变形为,整理后利用基本不等式可求最小值.【详解】因为,故,故,当

    6、且仅当时等号成立,故的最小值为3.故选:A.【点睛】方法点睛:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.9BD【分析】利用一元二次不等式的定义和特征对选项逐一判断即可.【详解】选项A是一元一次不等式,故错误;选项B,D,不等式的最高次是二次,二次项系数不为0,故正确;当时,选项C是一元一次不等式,故不一定是一元二次不等式,即错误.故选:BD.10AD【分析】根据已知条件,对各选项逐一分析即可求解.【详解】解:因为a0,所以,故选项D正确;因为a0,所以,所以,故

    7、选项A正确;取,则,所以,故选项B错误;取,则,所以,故选项C错误;故选:AD.11ACD【分析】设甲的速度为,解不等式0.1x1+0.0112得到甲的速度范围;设乙的速度为,解不等式0.05x2+0.00510得到乙的速度范围,即得解.【详解】设甲的速度为由题得0.1x1+0.0112,解之得或;设乙的速度为,由题得0.05x2+0.00510.解之得x240.由于x0,从而得x130km/h,x240km/h.经比较知乙车超过限速.故选:ACD12ACD【分析】根据基本不等式,对各项逐个分析判断,经过计算即可得解.【详解】对A,可得 ,当时取等,故A正确,对B,故B错误,对C, ,当取等,

    8、故C正确,对D,当时取等,故D正确.故选:ACD.【点睛】本题考查了基本不等式,在利用基本不等式求最值时,注意变量的取值范围,关键是考查能否取等号,属于基础题.133【分析】直接利用基本不等式求解即可【详解】解:因为,所以,当且仅当,即时取等号,所以函数的最小值是为3,故答案为:314【分析】运用不等式的性质可得答案.【详解】若窗户面积与地板面积同时增加m,采光效果变好了,用不等式表示为:,因为,所以成立.故答案为:.15【分析】对于,举反例判断;对于,利用不等式的性质判断即可;对于,作差判断;对于,举反例即可【详解】解:当c2=0时不成立.因为,所以,即,所以,所以正确当ab时,a3-b3=

    9、(a-b)(a2+ab+b2)=(a-b)0成立.当b-3,但22(-3)2.故答案为:16【分析】根据已知条件列方程组,由此求得,从而求得.【详解】依题意的解集是,所以,解得,所以.故答案为:17(1);(2).【分析】利用韦达定理可得,再对所求式子进行变行,即;两根和与积代入式子,即可得到答案;【详解】解:因为一元二次方程的两个实数根为,所以由根与系数关系可知.(1);(2).18()或;().【分析】()根据一元二次不等式的解法,直接求解,即可得出结果;()先移项通分,进而可求出结果.【详解】()由得,即,解得或,所以不等式的解集为或;()由得,即,即,解得,即不等式的解集为;19(1)

    10、;(2).【分析】(1)当时,得,解此不等式即可;(2)由题意可知是方程的两根,再利用根与系数的关系可得,从而可求出,的值.【详解】(1)当时,.不等式为,解得,所求不等式的解集为.(2),是方程的两根,解得20(1);(2).【分析】利用不等式的基本性质求解.【详解】解:(1)因为,所以,所以,即.(2)因为,所以,所以.【点睛】本题考查不等式的基本性质及应用,属于简单题.21(1)a1;(2)当时,不等式的解集为,当时,不等式的解集为,当时,不等式的解集为【分析】(1)由已知可知或是方程的根,把根代入方程中可求出的值;(2)由(1)可知不等不等式化为,然后分,和求解即可【详解】解:(1)因

    11、为不等式的解集为或,所以或是方程的根,所以,解得(2)由(1)可知不等式化为,即当时,不等式的解集为,当时,不等式的解集为,当时,不等式的解集为【点睛】此题考查由一元二次不等式的解集求参数,考查一元二次不等式的解法,属于基础题22(1);(2)475台;(3)年产量在11台到4800台之间时,企业不亏本【分析】(1)根据利润函数销售收入函数成本函数,由此即可求出结果;(2)由利润函数是二次函数,可以利用二次函数的性质求出函数取最大值时对应的自变量的值;(3)要使企业不亏本,则利润,根据分段函数,分类解不等式,即可求出结果【详解】(1)设利润为y万元,得即(2)显然当时,企业会获得最大利润,此时,即年产量为475台时,企业所得利润最大(3)要使企业不亏本,则即或得或,即即年产量在11台到4800台之间时,企业不亏本【点睛】本题主要考查了分段函数的应用,属于基础题.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022新人教A版(2019)《高中数学》必修第一册第二章一元二次函数、方程和不等式 检测题(基础卷)(含答案).doc
    链接地址:https://www.163wenku.com/p-3553010.html
    Q123
         内容提供者     

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库