2020年河南中考数学复习课件§3.2一次函数.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年河南中考数学复习课件§3.2一次函数.pptx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 课件 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、(注:日销售利润=日销售量(销售单价-成本单价) (1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值; (2)根据以上信息,填空: 该产品的成本单价是 元.当销售单价x= 元时,日销售利润w最大,最大值是 元; (3)公司计划开展科技创新,以降低该产品的成本.预计在今后的销售中,日销售量与销售单价仍存在(1)中的 关系.若想实现销售单价为90元时,日销售利润不低于3 750元的销售目标,该产品的成本单价应不超过多少 元?,解析 (1)设y关于x的函数解析式为y=kx+b,k0, 由题意得 解得 y关于x的函数解析式为y=-5x+600. (3分) 当x=115时,m=-5115+6
2、00=25. (4分) (2)80;100;2 000. (7分) (3)设该产品的成本单价为a元, 由题意得(-590+600)(90-a)3 750.解得a65. 答:该产品的成本单价应不超过65元. (10分),思路分析 (1)在表格中任选两对x,y的值,由待定系数法求得y关于x的函数解析式,把x=115代入求得m的值; (2)由85-875175=80,得成本单价,根据题意可求得w关于x的函数解析式,配方得解;(3)列出以a为未知数的 一元一次不等式,解不等式即可.,易错警示 解答第(2)问时,容易从表格中选取数值直接填空,造成错解,正确解法为求出w关于x的解析式w= y(x-80)=
3、-5(x-100)2+2 000,根据实际意义得,当x=100时,得出w的最大值2 000.,2.(2017河南,21,10分)学校“百变魔方”社团准备购买A,B两种魔方.已知购买2个A种魔方和6个B种魔方共 需130元,购买3个A种魔方和4个B种魔方所需款数相同. (1)求这两种魔方的单价; (2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活 动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.,解析 第一种参考答案: (1)设A,B两种魔方的单价分别为x元,y元. (1分) 根据题意得 解得 (3分) 即A,B两种魔方
4、的单价分别为20元,15元. (4分) (2)设购买A种魔方m个,按活动一和活动二购买所需费用分别为w1元,w2元. 依题意得w1=20m0.8+150.4(100-m)=10m+600, (5分) w2=20m+15(100-m-m)=-10m+1 500. (6分) 当w1w2时,10m+600-10m+1 500,m45; 当w1=w2时,10m+600=-10m+1 500,m=45; 当w1w2时,10m+600-10m+1 500,m45. (9分) 当45m50时,活动二更实惠;当m=45时,活动一、二同样实惠;当0m45(或0m45)时,活动一更实惠. (10分),第二种参考答
5、案: (1)设A,B两种魔方的单价分别为x元,y元. (1分) 根据题意得 解得 (3分) 即A,B两种魔方的单价分别为26元,13元. (4分) (2)设购买A种魔方m个,按活动一和活动二购买所需费用分别为w1元,w2元. 根据题意得w1=260.8m+130.4(100-m)=15.6m+520, (5分) w2=26m+13(100-m-m)=1 300. (6分) 15.60,w1随m的增大而增大, 当m=50时,w1最大,此时w1=15.650+520=1 300. (9分) 当0m50(或0m50)时,活动一更实惠;当m=50时,活动一、二同样实惠. (10分),3.(2015河南
6、,21,10分)某游泳馆普通票价20元/张,暑期为了促销,新推出两种优惠卡: 金卡售价600元/张,每次凭卡不再收费; 银卡售价150元/张,每次凭卡另收10元. 暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设游泳x次时,所需总费用为y元. (1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式; (2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标; (3)请根据函数图象,直接写出选择哪种消费方式更合算.,解析 (1)银卡:y=10x+150; (1分) 普通票:y=20x. (2分) (2)把x=0代入y=10x+150,得y=150.A(
7、0,150). (3分) 联立得 B(15,300). (4分) 把y=600代入y=10x+150,得x=45.C(45,600). (5分) (3)当045时,选择购买金卡更合算. (10分),解题关键 审清题意,用待定系数法求函数的解析式,选择消费方式时,自变量x的划分应不重不漏.,B组 20152019年全国中考题组 考点一 一次函数(正比例函数)的图象与性质 1.(2017福建,9,4分)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n-1),且0k2,则n的值可以是 ( ) A.3 B.4 C.5 D.6,答案 C 由已知可得 -,得k=n-4, 0k2, 0n-42,
8、4n6. 只有C选项符合条件,故选C.,解题关键 列方程组,消去m,得到k=n-4,由k的取值范围求得n的范围是解决本题的关键.,2.(2016陕西,7,3分)已知一次函数y=kx+5和y=kx+7.假设k0且k0,则这两个一次函数图象的交点在 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限,答案 A k0,k0, 设交点为(x0,y0),则有 解得x0= ,x00,y0=kx0+50,交点在第一象限.,3.(2019四川成都,13,4分)已知一次函数y=(k-3)x+1的图象经过第一、二、四象限,则k的取值范围是 .,答案 k3,解析 由题意得k-30,所以k3.,4.(20
9、19天津,16,3分)直线y=2x-1与x轴交点坐标为 .,答案,解析 令y=0,得x= ,所以直线y=2x-1与x轴交点坐标为 .,5.(2017吉林,14,3分)我们规定:当k,b为常数,k0,b0,kb时,一次函数y=kx+b与y=bx+k互为交换函数.例如: y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为 .,答案 1,解析 y=kx+2的交换函数为y=2x+k,令kx+2=2x+k,则(k-2)x=k-2,由题意得k-20,所以x=1,所以交点横坐标是 1.,6.(2019江西,17,6分)如图,在平面直角坐标系中,点A,B的坐标分别为 ,
10、 ,连接AB,以AB为边向 上作等边三角形ABC. (1)求点C的坐标; (2)求线段BC所在直线的解析式.,解析 (1)过点B作BDx轴于点D,则ADB=90. A ,B , DA= ,DB=1.AB=2. sinBAD= ,BAD=30. ABC为等边三角形,AC=AB=2,BAC=60. CAD=90.点C的坐标为 . (2)设线段BC所在直线的解析式为y=kx+b,k0.,将B ,C 代入,得 解得 线段BC所在直线的解析式为y=- x+ .,7.(2018重庆,22,10分)如图,在平面直角坐标系中,直线y=-x+3过点A(5,m)且与y轴交于点B,把点A向左平移2 个单位,再向上平
11、移4个单位,得到点C.过点C且与y=2x平行的直线交y轴于点D. (1)求直线CD的解析式; (2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x 轴交点的横坐标的取值范围.,解析 (1)直线y=-x+3过点A(5,m),-5+3=m. 解得m=-2. (1分) 点A的坐标为(5,-2). 由平移可得点C的坐标为(3,2). (2分) 直线CD与直线y=2x平行, 设直线CD的解析式为y=2x+b. (3分) 点C(3,2)在直线CD上,23+b=2. 解得b=-4. 直线CD的解析式为y=2x-4. (5分) (2)直线CD经过点E,此
12、时直线的解析式为y=2x-4. 令y=0,得x=2. (6分) y=-x+3与y轴交于点B,B(0,3). 当直线CD平移到经过点B(0,3)时,设此时直线的解析式为y=2x+m, 把(0,3)代入y=2x+m,得m=3. 此时直线的解析式为y=2x+3. (7分) 令y=0,得x=- . (8分) 直线CD在平移过程中与x轴交点的横坐标的取值范围为- x2. (10分),思路分析 (1)先把A(5,m)代入y=-x+3得A(5,-2),再利用点的平移规律得到C(3,2),设直线CD的解析式为y=2x +b,然后把C点坐标代入求出b,即可得到直线CD的解析式; (2)先确定直线CD平移前与x轴
13、的交点坐标,然后求得CD平移经过点B(0,3)时的直线解析式为y=2x+3,进而 求出直线y=2x+3与x轴的交点的横坐标,从而可得到直线CD在平移过程中与x轴交点的横坐标的取值范围.,考点二 一次函数(正比例函数)的应用问题 1.(2016黑龙江哈尔滨,10,3分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时 间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示. 则该绿化组提高工作效率前每小时完成的绿化面积是( ) A.300 m2 B.150 m2 C.330 m2 D.450 m2,答案 B 设提高效率后S与
14、t的函数解析式为S=kt+b(k0),t2,把(4,1 200)、(5,1 650)代入得 解得 所以提高效率后的函数解析式为S=450t-600(t2).把t=2代入解析式S=450t-60 0,得S=300,则绿化组提高工作效率前每小时完成的绿化面积为3002=150 m2,故选B.,2.(2015辽宁沈阳,15,4分)如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小 水杯内注水,注满小水杯后,继续注水.小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足图2中的图象, 则至少需要 s能把小水杯注满水.,答案 5,解析 设t s时恰好注满小水杯.在向小水杯
15、内注水的过程中,当0xt时,小水杯内水的高度y(cm)与注水时 间x(s)的图象是一条线段,这条线段所在直线过(0,1),(2,5),(t,11)三点.设这条直线的解析式为y=kx+b(k0),则 解这个方程组,得 这条直线的解析式为y=2x+1.当y=11时,有11=2t+1,t=5.至少需要5 s能把小水杯注满水.,评析 由函数图象的形状确定函数的类型是用函数模型解决实际问题最常用的方法.当函数图象为直线 (或其一部分)时,该函数为一次函数;当函数图象为双曲线(或其一部分)时,该函数为反比例函数;当函数图 象为抛物线(或其一部分)时,该函数为二次函数.,3.(2019吉林,23,8分)甲、
16、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶.相遇后,甲车继续以原速 行驶到B地,乙车立即以原速原路返回到B地.甲、乙两车距B地的路程y(km)与各自行驶的时间x(h)之间的 关系如图所示. (1)m= ,n= ; (2)求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围; (3)当甲车到达B地时,求乙车距B地的路程.,解析 (1)4;120. (2分) (2)当乙车与甲车相向行驶时,设y关于x的函数解析式为y=kx(0x2). 因为函数图象过(2,120), 所以2k=120, 解得k=60, 所以y关于x的函数解析式为y=60x(0x2). (4分) 当乙车和甲车同向
17、行驶时,设y关于x的函数解析式为y=k1x+b(2x4). 因为函数图象过(2,120),(4,0)两点, 所以 解得 所以y关于x的函数解析式为y=-60x+240(2x4). (6分) (3)当x=3.5时,y=-603.5+240=30. 所以当甲车到达B地时,乙车距B地的路程为30 km. (8分),解析 (1)由题图知,当x=0时,货车距乙地50 km. 又货车比轿车早出发1小时, 货车速度为50 km/h. 甲、乙两地相距400 km, 货车需要 =8小时到达. 则轿车行驶时间为8-1-1=6小时. t= =3, 轿车速度为 =80 km/h. 故答案为50,80,3. (3分)
18、(2)由题意可得A(3,240),B(4,240),C(7,0), 设直线OA的解析式为y=k1x(k10), 将A点坐标代入可得k1=80,y=80x(0x3), (5分),当3x4时,y=240. (6分) 设直线BC的解析式为y=kx+b(k0), 将(4,240)和(7,0)代入可得 y=-80x+560(4x7), (7分) y= (8分) (3)3小时或5小时. (10分) 详解:当货车与轿车相遇前相距90 km时,可得线段图如图,80x+90+50x+50=400, 解得x=2. 此时货车出发3小时. 当货车与轿车相遇后相距90 km时,可得线段图如图. 560-80x+50x+
19、50=400+90, 解得x=4. 此时货车出发5小时. 综上所述,货车出发3小时或5小时两车相距90 km.,5.(2018陕西,21,7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速 销往全国.小明家网店中红枣和小米这两种商品的相关信息如下表:,根据上表提供的信息,解答下列问题: (1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3 000 kg,获得利润4.2万元,求这前五个 月小明家网店销售这种规格的红枣多少袋; (2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共 2 000 kg,其中,
20、这种规格的红枣的销售量不低于600 kg.假设这后五个月,销售这种规格的红枣为x(kg),销售,这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求这后五个月,小明家网店销 售这种规格的红枣和小米至少获得总利润多少元.,思路分析 (1)设这前五个月小明家网店销售这种规格的红枣m袋,根据“销售题表中规格的红枣和小米共 3 000 kg,获得利润4.2万元”列出方程求解即可;(2)这后五个月,销售这种规格的红枣为x(kg),列出y与x之间 的函数关系式,利用一次函数的增减性及x的取值范围求出最值.,6.(2017上海,22,10分)甲、乙两家绿化养护公司各自推出了校园绿化养
21、护服务的收费方案. 甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示. 乙公司方案:绿化面积不超过1 000平方米时,每月收取费用5 500元;绿化面积超过1 000平方米时,每月在收 取5 500元的基础上,超过部分每平方米收取4元. (1)求如图所示的y与x的函数解析式;(不要求写出定义域) (2)如果某学校目前的绿化面积是1 200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用 较少.,解析 (1)设y=kx+b(k0). 将(100,900),(0,400)代入上式, 得 所求函数的解析式为y=5x+400. (2)如果选择甲公司,费用为
22、51 200+400=6 400(元), 如果选择乙公司,费用为5 500+4(1 200-1 000)=6 300(元), 应选择乙公司,每月的绿化养护费用较少.,C组 教师专用题组 考点一 一次函数(正比例函数)的图象与性质 1.(2019内蒙古包头,12,3分)如图,在平面直角坐标系中,已知A(-3,-2),B(0,-2),C(-3,0),M是线段AB上的一个动 点,连接CM,过点M作MNMC交y轴于点N,若点M、N在直线y=kx+b上,则b的最大值是 ( ) A.- B.- C.-1 D.0,答案 A 连接CA,由点C、A、B的坐标易得CAAB,ABBN.CMMN,CMA+BMN=90
23、,又 BNM+BMN=90,CMA=BNM,CAMMBN, = .设BM=a(0a3), = ,即BN= - + ,0a3,当a= 时,BN取最大值 ,此时ON取得最小值,为2- = ,点N在原点的下方, b=- ,b的最大值为- ,故选A.,难点突破 作辅助线CA,构造相似三角形,将问题转化为二次函数最值问题是解答本题的突破口.,2.(2018内蒙古呼和浩特,6,3分)若以二元一次方程x+2y-b=0的解为坐标的点(x,y)都在直线y=- x+b-1上,则常 数b= ( ) A. B.2 C.-1 D.1,答案 B 由x+2y-b=0得y=- x+ ,因为点(x,y)既在直线y=- x+ 上
24、,又在直线y=- x+b-1上,所以 =b-1,解 得b=2.故选B.,思路分析 将方程化为函数的形式,结合两直线重合,列出关于b的方程.,解题关键 解决本题的关键是要注意一次函数与二元一次方程的关系,通过等式变形寻找相同的系数和常 数项.,3.(2018陕西,4,3分)如图,在矩形AOBC中,A(-2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为 ( ) A.-2 B.- C.2 D.,答案 B 四边形AOBC是矩形,A(-2,0),B(0,1), AC=OB=1,BC=OA=2,点C的坐标为(-2,1), 将点C(-2,1)代入y=kx,得1=-2k,解得k=- ,故
展开阅读全文