2020年河北中考数学复习课件§4.2 概率.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年河北中考数学复习课件§4.2 概率.pptx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 课件 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、A组 河北中考题组,1.(2015河北,13,2分)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是 ( ) A. B. C. D.,答案 B 任意抛掷一枚质地均匀的正方体骰子一次, 向上一面的点数有6种情况,与点数3相差2的点数为1或5, 任意抛掷一枚质地均匀的正方体骰子一次, 向上一面的点数与点数3相差2的概率为 = . 故选B.,2.(2014河北,11,3分)某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示 的折线统计图,则符合这一结果的试验最有可能的是 ( ) A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀” B.一副去掉
2、大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃 C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球 D.掷一个质地均匀的正六面体骰子,向上的面点数是4,答案 D 掷一个质地均匀的正六面体骰子,向上的面的点数共有6种情况:1,2,3,4,5,6.向上的面的点数是4 的概率为 0.167.随着试验次数的增多,频率会越来越接近于概率.显然这个试验符合题图.选项A中,小明 出“剪刀”的概率是 0.33,选项B中,抽到红桃的概率是 =0.25,选项C中,取到黄球的概率是 0.67,都 与题图不符.故选D.,解题关键 此题考查利用频率估计概率,正确求出每个选项的概率是解题的关键
3、.,3.(2013河北,17,3分)如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面 接触的概率是 .,答案,解析 正方体小木块有六个面,其中含有点A的面有三个.将木块随机投掷在水平桌面上,则与桌面接触的 面有六种情况,出现点A与桌面接触的情况有三种,故概率等于 = .,4.(2019河北,22,9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P (一次拿到8元球)= . (1)求这4个球价格的众数; (2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.,所剩的3个球价格的中位数与原来4个球价格
4、的中位数是否相同?并简要说明理由;,乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如表)求乙组两次都拿到8元球的概率.,解析 (1)P(一次拿到8元球)= = ,8元球的个数为2. (2分) 众数是8. (3分) (2)相同.理由如下: (4分) 所剩3个球的价格分别是8,8,9,中位数是8. 原4个球的价格分别是7,8,8,9,中位数是8.相同.(6分) 列表如下:,(8分) 所有等可能的结果共9种,乙组两次都拿到8元球的结果共4种, P(乙组两次都拿到8元球)= . (9分),5.(2016河北,23,9分)如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,
5、4. 图1 图2 如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是 几,就沿正方形的边顺时针方向连续跳几个边长. 如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳,2个边长,落到圈B;. 设游戏者从圈A起跳. (1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1; (2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性是否相 同.,解析 (1)掷一次骰子有4种等可能结果, 只有掷得4时,才会落回到圈A, P1= . (3分) (2)列表如下:,(6分)
6、 所有等可能的情况共有16种,当两次掷得的数字和为4的倍数,即(1,3),(2,2),(3,1),(4,4)时,才会落回到圈A,共 有4种,P2= = . (8分) 而P1= , P1=P2. 淇淇与嘉嘉回到圈A的可能性相同. (9分),易错警示 注意随机掷两次骰子,最后落回到圈A,需要两次掷得的数字之和是4的倍数.,考点一 事件的分类 1.(2018福建,6,4分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.则下列事件为随机事 件的是 ( ) A.两枚骰子向上一面的点数之和大于1 B.两枚骰子向上一面的点数之和等于1 C.两枚骰子向上一面的点数之和大于12 D.两枚骰子向上一
7、面的点数之和等于12,B组 20152019年全国中考题组,答案 D 投掷两枚质地均匀的骰子,向上一面的点数之和一定大于1,故选项A是必然事件,选项B是不可 能事件;一枚骰子向上一面的点数最大是6,因此点数之和最大为12,选项C为不可能事件,故选D.,2.(2018辽宁沈阳,7,2分)下列事件中,是必然事件的是 ( ) A.任意买一张电影票,座位号是2的倍数 B.13个人中至少有两个人生肖相同 C.车辆随机到达一个路口,遇到红灯 D.明天一定会下雨,答案 B A选项,电影院的座位号有可能是奇数,也有可能是偶数,所以A是随机事件;B选项,生肖一共12个, 所以B是必然事件;C选项,遇到的灯有可能
8、是红灯、绿灯或黄灯,所以C是随机事件;D选项,明天有可能下雨, 也可能不下雨,所以D是随机事件.,3.(2016湖北武汉,4,3分)一个不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个 白球,从袋子中一次摸出3个球.下列事件是不可能事件的是 ( ) A.摸出的是3个白球 B.摸出的是3个黑球 C.摸出的是2个白球、1个黑球 D.摸出的是2个黑球、1个白球,答案 A 袋子中只有2个白球,所以“摸出的是3个白球”是不可能事件.故选A.,考点二 概率的意义 1.(2018山东烟台,6,3分)下列说法正确的是 ( ) A.367人中至少有2人生日相同 B.任意掷一枚质地均匀的骰子
9、,掷出的点数是偶数的概率是 C.天气预报说明天的降水概率为90%,则明天一定会下雨 D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖,答案 A 一年最多有366天,所以367人中至少有2人生日相同,选项A正确;任意掷一枚质地均匀的骰子,掷 出的点数是偶数的概率应是 ,选项B错误;天气预报说明天的降水概率为90%,只是说降雨的可能性较大, 但不能说明天一定会下雨,选项C错误;某种彩票中奖的概率是1%,并不是说买100张彩票一定有1张中奖,选 项D错误.故选A.,2.(2019四川成都,23,4分)一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放 入5个相同的
10、白球,摇匀后从中随机摸出一个球,若摸到白球的概率为 ,则盒子中原有的白球的个数为 .,答案 20,解析 设盒子中原有白球x个,由题意得(x+5)(10+x+5)=57,所以x=20,即盒子中原有的白球的个数为20.,3.(2018湖北武汉,12,3分)下表记录了某种幼树在一定条件下移植成活情况:,由此估计这种幼树在此条件下移植成活的概率是 (精确到0.1).,答案 0.9,解析 大量重复试验的情况下,频率的稳定值可以作为概率的估计值,所以这种幼树在此条件下移植成活 的概率约为0.9.,4.(2018天津,15,3分)一个不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色
11、外无其 他差别.从袋子中随机取出1个球,则它是红球的概率是 .,答案,解析 袋子中共有11个小球,其中红球有6个, P(取出一个球是红球)= .,5.(2018四川成都,22,4分)汉代数学家赵爽在注解周髀算经时给出的“赵爽弦图”是我国古代数学的 瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为23.现随机向该图形内掷 一枚小针,则针尖落在阴影区域的概率为 .,答案,解析 设直角三角形的两直角边长分别是2x,3x(x0),则题图中大正方形边长是 x,小正方形边长为x, S大正方形=13x2,S小正方形=x2,则S阴影=12x2,P(针尖落在阴影区域)= = .,6.(2
12、018四川凉山州,20,7分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球. (1)求从中随机抽出一个黑球的概率是多少; (2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是 ,求y与x之间的函数关系 式.,解析 (1)取出一个黑球的概率P= = . (2)取出一只白球的概率P= , = , 12+4x=7+x+y. y与x的函数关系式为y=3x+5.,考点三 概率的计算 1.(2018河南,8,3分)现有4张卡片,其中3张卡片正面上的图案是“ ”,1张卡片正面上的图案是“ ”,它 们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张
13、卡片正面图案相同的概率是 ( ) A. B. C. D.,答案 D 记图案“ ”为字母“a”,图案“ ”为字母“b”,画树状图如下. 共有12种等可能的结果,其中两张卡片正面图案相同的结果有6种,则所求概率为 = .故选D.,2.(2015山东临沂,7,3分)一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽 只好把杯盖和茶杯随机地搭配在一起.则其颜色搭配一致的概率是 ( ) A. B. C. D.1,答案 B 列表如下:,所有等可能的结果共有4种,其中搭配一致的有2种,因此P(颜色搭配一致)= = .故选B.,3.(2019天津,15,3分)不透明袋子中装有7个球,其
14、中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他 差别.从袋子中随机取出1个球,则它是绿球的概率是 .,答案,解析 因为不透明袋子中装有7个球,其中3个绿球,所以从袋子中随机取出一个球是绿球的概率是 .,方法指导 简单事件发生的概率的求法,需找准两点:全部情况的数目;符合条件的情况数目.,4.(2019新疆,13,5分)同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是 .,答案,解析 画树状图如图. 共有36种等可能的结果,其中两枚骰子点数之和小于5(记为事件A)的结果有6种,P(A)= = .,方法总结 通过画树状图列举出所有等可能的结果,再从中选出符合事件的结果数目,然后根据
15、概率公式 求出事件的概率.,5.(2018湖北黄冈,14,3分)在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函 数图象恰好经过第一、二、四象限的概率为 .,答案,解析 列举a,b所有可能的取值情况如下:,由上表可知,a,b所有可能的取值情况有12种, 二次函数y=ax2+bx+1的图象恰好经过第一、二、四象限, 且x=0时,y=10, a0,b0, 易知满足条件的a,b的值有2种情况,即a=1,b=-4或a=2,b=-4, 二次函数图象恰好经过第一、二、四象限的概率为 = .,6.(2019云南,19,7分)甲、乙两名同学玩一个游戏:在一个不
16、透明的口袋中装有标号分别为1,2,3,4的四个小 球(除标号外无其他差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随 机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数, 则乙获胜. (1)用列表法或画树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数; (2)你认为这个游戏对双方公平吗?请说明理由.,解析 (1)解法一:列表如下.,由表可知(x,y)所有可能出现的结果共有16种. (4分) 解法二:画树状图如下.,由图知(x,y)所有可能出现的结果共有16种. (4分) (2)这
17、个游戏对双方公平.理由如下: 由(1)可知,在16种可能出现的结果中,它们出现的可能性相等. x+y为奇数的有8种情况,P(甲获胜)= = . x+y为偶数的有8种情况,P(乙获胜)= = . (6分) P(甲获胜)=P(乙获胜). 这个游戏对双方公平. (7分),解后反思 本题属于“有放回”类型,所以第一次摸球有4种可能,第二次摸球也有4种可能,所以共有44= 16种可能.判断游戏公不公平,只需对比x+y为奇数和x+y为偶数的概率即可.,7.(2018陕西,22,7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中 标有数字“1”的扇形的圆心角为120.转动转盘
18、,待转盘自动停止后,指针指向一个扇形的内部,则该扇形 内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转 动转盘,直到指针指向一个扇形的内部为止). (1)转动转盘一次,求转出的数字是-2的概率; (2)转动转盘两次,用画树状图或列表法求这两次分别转出的数字之积为正数的概率.,解析 (1)转动转盘一次,共有3种等可能的结果,其中,转出的数字是-2的结果有1种, P(转出的数字是-2)= . (2分) (2)由题意,列表如下:,(5分) 由表格可知,共有9种等可能的结果,其中,这两次分别转出的数字之积为正数的结果有5种, P(这两次分别转出的数字之
19、积为正数)= . (7分),思路分析 (1)可以把标有数字“-2”的两个扇形看成一个大扇形.可知转动转盘一次共有3种等可能的结 果,其中转出的数字是-2的结果有1种,根据概率公式计算得解;(2)用列表法得出所有等可能的结果,从中找 到乘积为正数的结果,再利用概率公式求解即可.,8.(2018贵州贵阳,21,10分)图是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图 是一个正六边形棋盘.现通过掷骰子的方式玩跳棋游戏.规则是:将这枚骰子掷出后,看骰子向上三个面(除 底面外)的数字之和是几,就从图中的A点开始沿着顺时针方向连续跳动几个顶点.第二次从第一次的终 点处开始,按第
20、一次的方法跳动. (1)随机掷一次骰子,则棋子跳动到点C处的概率是 ; (2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.,解析 (1) . (2)向上3个面的数字之和可能是6,7,8,9,列表如下:,由表格可知,总共有16种可能的结果,每种结果出现的可能性相同,其中,棋子最终跳动到点C处的结果有(6, 8),(7,7),(8,6),共3种,所以P(棋子最终跳动到点C处)= .,考点一 事件的分类,C组 教师专用题组,1.(2019湖北武汉,3,3分)不透明袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别.随机从袋子中 一次摸出3个球,下列事件是不可能事件的是
21、( ) A.3个球都是黑球 B.3个球都是白球 C.3个球中有黑球 D.3个球中有白球,答案 B 袋子中一共有6个球,其中有4个黑球,所以摸出的三个球可能都是黑球,可能有黑球有白球,但不 可能都是白球,因为白球最多有2个,所以一定会摸出黑球.一次摸出3个白球是不可能事件,故选B.,2.(2018内蒙古包头,4,3分)下列事件中,属于不可能事件的是 ( ) A.某个数的绝对值大于0 B.某个数的相反数等于它本身 C.任意一个五边形的外角和等于540 D.长分别为3,4,6的三条线段能围成一个三角形,答案 C 某个数的绝对值大于0,是随机事件, 某个数的相反数等于它本身,是随机事件, 所以选项A,
22、B不符合题意; 五边形的外角和等于360,不可能等于540, 所以选项C是不可能事件,符合题意; 选项D为必然事件,不符合题意.故选C.,3.(2018山东淄博,2,4分)下列语句描述的事件中,是随机事件的为 ( ) A.水能载舟,亦能覆舟 B.只手遮天,偷天换日 C.瓜熟蒂落,水到渠成 D.心想事成,万事如意,答案 D 水能载舟,亦能覆舟,为必然事件;只手遮天,偷天换日,为不可能事件;瓜熟蒂落,水到渠成,为必然 事件;心想事成,万事如意,为随机事件.故选D.,4.(2017新疆,4,5分)下列事件中,是必然事件的是 ( ) A.购买一张彩票,中奖 B.通常温度降到0 以下,纯净的水结冰 C.
23、明天一定是晴天 D.经过有交通信号灯的路口,遇到红灯,答案 B 购买一张彩票中奖可能发生也可能不发生,是随机事件;根据物理学知识可知通常温度降到0 以下,纯净的水结冰,是必然事件;明天可能是晴天也可能不是晴天,是随机事件;经过有交通信号灯的路口, 可能遇到红灯也可能不遇到红灯,是随机事件,故选B.,解题关键 解题的关键是正确理解随机事件与必然事件.,5.(2016辽宁沈阳,5,2分)“射击运动员射击一次,命中靶心”这个事件是 ( ) A.确定事件 B.必然事件 C.不可能事件 D.不确定事件,答案 D 不确定事件即随机事件,是指在一定条件下,可能发生也可能不发生的事件.显然,事件“射击运 动员
24、射击一次,命中靶心”是不确定事件,故选D.,考点二 概率的意义 (2019贵州贵阳,5,3分)如图,在33的正方形网格中,有三个小正方形已经涂成灰色,若再任意涂灰1个白色 的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概 率是 ( ) A. B. C. D.,答案 D 共有6种等可能的情况,其中2种情况使得新构成灰色部分的图形是轴对称图形.所以所求概率为 = ,故选D.,2.(2017甘肃兰州,7,4分)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸 球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重
展开阅读全文