2020年河北中考数学复习课件§3.4 二次函数.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年河北中考数学复习课件§3.4 二次函数.pptx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 课件 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、A组 河北中考题组,1.(2018河北,16,2分)对于题目“一段抛物线L:y=-x(x-3)+c(0x3)与直线l:y=x+2有唯一公共点.若c为整数, 确定所有c的值.”甲的结果是 c=1,乙的结果是c=3或4,则 ( ) A.甲的结果正确 B.乙的结果正确 C.甲、乙的结果合在一起才正确 D.甲、乙的结果合在一起也不正确,答案 D 抛物线L:y=-x(x-3)+c(0x3)可以看作抛物线y=-x(x-3)(0x3)沿y轴向上平移c个单位形成的, 一段抛物线L:y=-x(x-3)+c(0x3)与直线l:y=x+2有唯一公共点可以看作直线l:y=x+2沿y轴向下平移c个单 位形成的直线y=x
2、+2-c与抛物线y=-x(x-3)(0x3)有唯一公共点.当直线y=x+2-c(即l2)经过原点时,0+2-c=0,c =2;当直线y=x+2-c(即l3)经过点A(3,0)时,3+2-c=0,c=5,根据图象可得当2c5时,直线y=x+2-c与抛物线y=-x(x -3)(0x3)有唯一公共点,即一段抛物线L:y=-x(x-3)+c(0x3)与直线l:y=x+2有唯一公共点.显然c=3,4,5. 当直线y=x+2-c为图中l1时,直线y=x+2-c与抛物线y=-x(x-3)(0x3)有唯一公共点.令-x(x-3)=x+2-c,得x2-2x+2 -c=0,=4-4(2-c)=0,解得c=1.因此
3、甲、乙的结果合在一起也不正确,故选D.,归纳总结 数形结合思想主要指的是数与形之间的一一对应关系,就是把抽象的数学语言、数量关系与直 观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”,即通过抽象思维与形象思维的结 合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.,2.(2017河北,19,4分)对于实数p,q,我们用符号minp,q表示p,q两数中较小的数,如min1,2=1.因此, min- ,- = ;若min(x-1)2,x2=1,则x= .,答案 - ;2或-1,解析 - x2,若 min(x-1)2,x2=1,显然x2=1,解得x=-1或x=1(舍
4、);当x 时,有(x-1)2x2,若min(x-1)2,x2=1,显然(x-1)2=1,解得x=2 或x=0(舍).综上,x=2或-1.,3.(2019河北,26,12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x-b与y轴交于点B;抛物线L:y=-x2+bx 的顶点为C,且L与x轴右交点为D. (1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标; (2)当点C在l下方时,求点C与l距离的最大值; (3)设x00,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离; (4)在L和a所围成的
5、封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2 019和 b=2 019.5时“美点”的个数.,解析 (1)当x=0时,y=x-b=-b,B(0,-b). AB=8,A(0,b),b-(-b)=8.b=4. (2分) L的方程为y=-x2+4x.L的对称轴为x=2. 当x=2时,y=x-4=-2. L的对称轴与a的交点坐标为(2,-2). (4分) (2)y=- + ,L的顶点C的坐标为 . (5分) 点C在l下方,C与l的距离为b- =- (b-2)2+11. 点C与l距离的最大值为1. (7分) (3)由题意得y3= ,即y1+y2=2y3,得b+x0-b=2(
6、- +bx0). 解得x0=0或x0=b- .但x00,取x0=b- . (9分) 对于L,当y=0时,0=-x2+bx,即0=-x(x-b).,解得x1=0,x2=b.b0,右交点D的坐标为(b,0). 点(x0,0)与点D间的距离为b- = . (10分) (4)4 040;1 010. (12分) 详解:如图,a与L的交点坐标满足:y=x-b=-x2+bx,得交点D(b,0),E(-1,-1-b). 当b为整数时,而x也是整数,对应的y=-x2+bx和y=x-b均为整数. 当x=-1和x=b时,对应的“美点”各只有一个. 从x=0到x=b-1共有b个整数,每个整数x都对应两个“美点”,
7、此时“美点”个数为2b+2.把b=2 019代入,求得“美点”个数为4 040. 当b不是整数时,但x是整数,x-b不是整数,即边界y=x-b(-1xb)上没有“美点”;而在边界y=-x2+bx(-1 xb)上,满足bx是整数才有“美点”.对于b=2 019.5,x应是从0到2 018的偶数,此时“美点”的个数为 2 0182+1=1 010.,思路分析 (1)由题意得OA=OB,AB=8,b=4,可得L的方程为y=-x2+4x,进而得出L的对称轴为x=2,把x=2代 入y=x-4得出交点坐标;(2)将二次函数解析式配方得出顶点坐标为 ,根据点C在l下方得出点C与l的距 离为b- =- (b-
8、2)2+11,进而得出最大值;(3)由y3是y1,y2的平均数,可得y3= ,即y1+y2=2y3,得b+x0-b= 2(- +bx0),求出x0的值,令y=-x2+bx=0,求出点D的坐标,两者横坐标相减得出结论;(4)易得点D(b,0),点E(-1,-1-b), 分两种情况,当b为整数,而x也是整数时,求得“美点”的个数;当b不是整数,但x是整数时,求得“美 点”的个数.,4.(2017河北,26,12分)某厂按用户的月需求量x(件)完成一种产品的生产,其中x0.每件的售价为18万元,每件 的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研
9、发 现,月需求量x与月份n(n为整数,1n12)符合关系式x=2n2-2kn+9(k+3)(k为常数),且得到了下表中的数据.,(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元; (2)求k,并推断是否存在某个月既无盈利也不亏损; (3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.,解析 (1)由题意设y=a+ ,由表中数据, 得 解得 y=6+ . (3分) 由题意,若12=18- ,则 =0,x0, 0. 不可能. (5分) (2)将n=1,x=120代入x=2n2-2kn+9(k+3),得 120=2-2k+9k+27. 解得k=13, 将n=2,
10、x=100代入x=2n2-26n+144也符合. k=13. (6分),由题意,得18=6+ ,求得x=50. 50=2n2-26n+144,即n2-13n+47=0. =(-13)2-41470,方程无实根. 不存在. (9分) (3)第m个月的利润W=x(18-y)=18x-x =12(x-50)=24(m2-13m+47), 第(m+1)个月的利润W=24(m+1)2-13(m+1)+47=24(m2-11m+35). 若WW,W-W=48(6-m),m取最小1,W-W=240最大. 若WW,W-W=48(m-6),m+112,m11, m取最大11,W-W=240最大. m=1或11.
11、 (12分),5.(2015河北,25,11分)如图,已知点O(0,0),A(-5,0),B(2,1),抛物线l:y=-(x-h)2+1(h为常数)与y轴的交点为C. (1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标; (2)设点C的纵坐标为yC,求yC的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1x20,比较y1与y2的大小; (3)当线段OA被l只分为两部分,且这两部分的比是14时,求h的值.,解析 (1)把x=2,y=1代入y=-(x-h)2+1,得h=2. l的解析式为y=-(x-2)2+1(或y=-x2+4x-3). (2分) 对称轴为直线x=2,顶点
12、为B(2,1). (4分) (2)点C的横坐标为0,则yC=-h2+1, 当h=0时,yC有最大值,为1. (5分) 此时,l为y=-x2+1,对称轴为y轴, 当x0时,y随着x的增大而减小, x1x20时,y1y2. (7分) (3)把线段OA分成14两部分的点为(-1,0)或(-4,0). 把x=-1,y=0代入y=-(x-h)2+1,得h=0或h=-2. 但h=-2时,线段OA被分为三部分,不合题意,舍去.同样,把x=-4,y=0代入y=-(x-h)2+1,得h=-5或h=-3(舍去). h的值为0或-5. (11分),思路分析 (1)把点B的坐标代入函数解析式,列出关于h的方程,可以求
13、得h的值;利用抛物线的解析式得到 该图象的对称轴和顶点坐标; (2)把点C的坐标代入函数解析式得到yC=-h2+1,则由抛物线的性质易得yC的最大值,并可以求得此时抛物线 的解析式,根据抛物线的增减性来判断y1与y2的大小; (3)根据已知条件“O(0,0),A(-5,0),线段OA被l只分为两部分,且这两部分的比是14”可以推知把线段OA 分为两部分的点的坐标分别是(-1,0),(-4,0).由抛物线上点的坐标特征可以求得h的值.,易错警示 解答第(3)问时,注意对h的值根据实际意义进行取舍.,6.(2014河北,24,11分)如图,22网格(每个小正方形的边长为1)中有A,B,C,D,E,
14、F,G,H,O九个格点.抛物线l的 解析式为y=(-1)nx2+bx+c(n为整数). (1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点; (2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上; (3)若l经过这九个格点中的三个, 写出所有满足这样条件的抛物线条数.,解析 (1)当n为奇数时,y=-x2+bx+c. 点H(0,1)和C(2,1)在该抛物线上, 解得 (4分) 格点E是该抛物线的顶点. (5分) (2)当n为偶数时,y=x2+bx+c. 点A(1,0)和B(2,0)在该
15、抛物线上, 解得 y=x2-3x+2. (7分 ) 当x=0时,y=21. 点F(0,2)在该抛物线上,而点H(0,1)不在该抛物线上. (9分) (3)所有满足条件的抛物线共有8条. (11分),注:当n为奇数时,由(1)中的抛物线平移又得3条抛物线,如图1;当n为偶数时,由(2)中的抛物线平移又得3条抛 物线,如图2.共8条. 图1,图2,考点一 二次函数的图象与性质,B组 20152019年全国中考题组,1.(2019河南,8,3分)已知抛物线y=-x2+bx+4经过(-2,n)和(4,n)两点,则n的值为 ( ) A.-2 B.-4 C.2 D.4,答案 B 抛物线经过(-2,n)和(
16、4,n)两点, 解得 故选B.,一题多解 抛物线经过(-2,n)和(4,n)两点,抛物线的对称轴为直线x= =1,即 =1,b=2,n=-(-2)2+ 2(-2)+4=-4.,2.(2019甘肃兰州,11,4分)已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是 ( ) A.2y1y2 B.2y2y1 C.y1y22 D.y2y12,答案 A 由y=-(x+1)2+2知,抛物线开口向下,对称轴为直线x=-1,y的最大值为2,在对称轴右侧y随x的增大而 减小,又1y1y2,故选A.,3.(2018四川成都,10,3分)关于二次函数y=2x2+4x-1,下列说
17、法正确的是 ( ) A.图象与y轴的交点坐标为(0,1) B.图象的对称轴在y轴的右侧 C.当x0时,y的值随x值的增大而减小 D.y的最小值为-3,答案 D 因为y=2x2+4x-1=2(x+1)2-3,所以,当x=0时,y=-1,选项A错误;该函数图象的对称轴是直线x=-1,选项 B错误;当x-1时,y随x的增大而减小,选项C错误;当x=-1时,y取得最小值,此时y=-3,选项D正确.故选D.,4.(2018陕西,10,3分)对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y0,则这条抛物线的顶点一定在 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限,答案 C 当
18、x=1时,y=a+2a-1+a-30,解得a1,又根据抛物线顶点坐标公式可得- =- 0, = = 0,所以这条抛物线的顶点一定在第三象限,故选C.,5.(2017天津,12,3分)已知抛物线y=x2-4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点 M平移后的对应点M落在x轴上,点B平移后的对应点B落在y轴上.则平移后的抛物线解析式为 ( ) A.y=x2+2x+1 B.y=x2+2x-1 C.y=x2-2x+1 D.y=x2-2x-1,答案 A 令y=0,则x2-4x+3=0,解得x1=1,x2=3, A(1,0),B(3,0). y=x2-4x+3=(x-2)
19、2-1,点M的坐标为(2,-1), 平移该抛物线,使点M平移后的对应点M落在x轴上,点B平移后的对应点B落在y轴上, 抛物线向上平移了1个单位长度,向左平移了3个单位长度, 平移后的抛物线解析式为y=(x+1)2=x2+2x+1,故选A.,解题关键 正确得出平移的方向和距离是解题的关键.,6.(2017甘肃兰州,18,4分)如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则Q点的坐标 为 .,答案 (-2,0),解析 P,Q两点关于对称轴x=1对称,则P,Q两点到对称轴x=1的距离相等,设点Q的横坐标为m,则 =1,解 得m=-2.Q点的坐标为(-2,0).
20、,7.(2018陕西,24,10分)已知抛物线L:y=x2+x-6与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C. (1)求A、B、C三点的坐标,并求ABC的面积; (2)将抛物线L向左或向右平移,得到抛物线L,且L与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交 于点C,要使ABC和ABC的面积相等,求所有满足条件的抛物线的函数表达式.,解析 (1)令y=0,得x2+x-6=0, 解得x=-3或x=2, A(-3,0),B(2,0). (2分) AB=5, 令x=0,得y=-6, C(0,-6), (3分) OC=6, SABC= ABOC= 56=15. (4分)
21、(2)由题意,得AB=AB=5. 要使SABC=SABC,只要抛物线L与y轴的交点为C(0,-6)或C(0,6)即可. 设所求抛物线L:y=x2+mx+6,y=x2+nx-6. (7分) 又知,抛物线L与抛物线L的顶点纵坐标相同, = , = , 解得m=7,n=1(n=1舍去). 抛物线L的函数表达式为y=x2+7x+6或y=x2-7x+6或y=x2-x-6. (10分),考点二 二次函数与a、b、c的关系 1.(2019四川成都,10,3分)如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是 ( ) A.c0 B.b2-4ac0 C.a-b+c0 D
22、.图象的对称轴是直线x=3,答案 D 抛物线与y轴的正半轴相交,所以c0;抛物线与x轴有两个交点,所以b2-4ac0;当x=-1时,y=a-b+c, 由题图可知a-b+c0,所以选项A,B,C错误,抛物线的对称轴为直线x= =3,选项D正确,故选D.,2.(2019贵州贵阳,10,3分)在平面直角坐标系内,已知点A(-1,0),点B(1,1)都在直线y= x+ 上,若抛物线y=ax2-x +1(a0)与线段AB有两个不同的交点,则a的取值范围是 ( ) A.a-2 B.a C.1a 或a-2 D.-2a,答案 C 令ax2-x+1= x+ ,即ax2- x+ =0,若直线与抛物线有两个不同的交
23、点,则有 -4 a0,解得a 0时, 解得a1,1a .综上所述,1a 或a-2,故选C.,解后反思 解答本题的关键是正确理解直线y= x+ 以及线段与抛物线有2个不同的交点的含义,这类问 题常常利用数形结合法进行解题.,3.(2018湖北襄阳,9,3分)已知二次函数y=x2-x+ m-1的图象与x轴有交点,则m的取值范围是 ( ) A.m5 B.m2 C.m2,答案 A 抛物线y=ax2+bx+c与x轴有交点,所以b2-4ac0,即(-1)2-41 0,解得m5.故选A.,4.(2018山东滨州,10,3分)如图,若二次函数y=ax2+bx+c(a0)图象的对称轴为x=1,与y轴交于点C,与
24、x轴交于 点A、点B(-1,0),则二次函数的最大值为a+b+c;a-b+c0时,-1x3.其中正确的个数 是 ( ) A.1 B.2 C.3 D.4,答案 B 由图象可知,当x=1时,函数值取到最大值,最大值为a+b+c,故正确;因为抛物线经过点B(-1,0),所 以当x=-1时,y=a-b+c=0,故错误;因为该函数图象与x轴有两个交点A、B,所以b2-4ac0,故错误;因为点A 与点B关于直线x=1对称,所以A(3,0),根据图象可知,当y0时,-1x3,故正确.故选B.,5.(2018新疆,15,5分)如图,已知抛物线y1=-x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x
展开阅读全文