2020年北京中考数学复习课件§5.1 图形的轴对称、平移与旋转.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年北京中考数学复习课件§5.1 图形的轴对称、平移与旋转.pptx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 课件 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、1.(2019北京,2,2分)下列倡导节约的图案中,是轴对称图形的是( ),北京中考题组,答案 C 选项A、B、D不是轴对称图形,选项C是轴对称图形.故选C.,2.(2017北京,5,3分)下列图形中,是轴对称图形但 中心对称图形的是 ( ),答案 A 选项A中的图形是轴对称图形但不是中心对称图形;选项B、D中的图形既是轴对称图形又是中 心对称图形;选项C中的图形是中心对称图形但不是轴对称图形.故选A.,3.(2016北京,7,3分)甲骨文是我国的一种古代文字,是汉字的早期形式.下列甲骨文中,不是轴对称图形的是 ( ),答案 D 选项A、B、C都是轴对称图形,故选D.,4.(2015北京,4,
2、3分)剪纸是我国传统的民间艺术.下列剪纸作品中,是轴对称图形的为 ( ),答案 D 选项A、B既不是中心对称图形也不是轴对称图形;选项C是中心对称图形,不是轴对称图形;选 项D是轴对称图形.故选D.,5.(2017北京,15,3分)如图,在平面直角坐标系xOy中,AOB可以看作是OCD经过若干次图形的变化(平 移、轴对称、旋转)得到的,写出一种由OCD得到AOB的过程: .,答案 将OCD以点C为旋转中心按顺时针方向旋转90,再向左平移2个单位长度(答案不唯一),考点一 轴对称的概念及性质,教师专用题组,1.(2019河北,9,3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需
3、涂黑n个小正三角形,使 它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为 ( ) A.10 B.6 C.3 D.2,答案 C 正三角形恰有三条对称轴,所以联想把图中的三个小正三角形涂黑,而当n=1或2时,不能出现符 合题意的新图案,所以n的最小值为3,故选C.,2.(2019辽宁大连,9,3分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF.若AB=4,BC=8,则DF的长 为 ( ) A.2 B.4 C.3 D.2,答案 C 四边形ABCD为矩形,AB=4,BC=8, AD=BC=8,CD=AB=4,D=90, 由折叠可得AD=CD=4,D=D=90,FD=F
4、D, 设FD=x,则FD=FD=x,AF=AD-FD=8-x, 在RtADF中,AD2+FD2=AF2,即42+x2=(8-x)2,解得x=3.FD=3,故选C.,3.(2018重庆,2,4分)下列图形中一定是轴对称图形的是 ( ),答案 D 根据轴对称图形的概念可得矩形一定是轴对称图形.故选D.,解题关键 判断轴对称图形的关键是寻找对称轴.,4.(2018天津,10,3分)如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕为 BD,则下列结论一定正确的是 ( ) A.AD=BD B.AE=AC C.ED+EB=DB D.AE+CB=AB,答案 D 由折叠的性质知
5、,BC=BE,AE+CB=AB.故选D.,5.(2018新疆,9,5分)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中 点,则MP+PN的最小值是 ( ) A. B.1 C. D.2,答案 B 如图,取AD的中点M,连接MN,MP, 则有MP=MP.MP+PN的最小值为线段MN的长, 即菱形边长1.故选B.,思路分析 先确定M关于直线AC的对称点M,再借助两点之间线段最短来确定线段和的最小值.,解题关键 解决本题的关键是要借助轴对称将MP+PN转化为MP+PN,进而借助两点之间线段最短来解决.,6.(2017内蒙古呼和浩特,3,3分)下图中序号(1)
6、(2)(3)(4)对应的四个三角形,都是ABC这个图形进行了一次 变换之后得到的,其中是通过轴对称得到的是 ( ) A.(1) B.(2) C.(3) D.(4),答案 A 根据轴对称的性质可知,序号(1)对应的三角形与ABC的对应点所连的线段被一条直线(对称 轴)垂直平分,故选A.,7.(2017山西,6,3分)如图,将矩形纸片ABCD沿BD折叠,得到BCD,CD与AB交于点E.若1=35,则2的度 数为 ( ) A.20 B.30 C.35 D.55,答案 A ABCD,C=90,ABD=1=35,DBC=90-1=55, 由折叠的性质得DBC=DBC=55,2=DBC-ABD=55-35
7、=20.,8.(2017安徽,10,4分)如图,在矩形ABCD中,AB=5,AD=3.动点P满足SPAB= S矩形ABCD.则点P到A,B两点距离之和 PA+PB的最小值为 ( ) A. B. C.5 D.,答案 D 如图,过点P作MN,使MNAB,作A点关于MN的对称点A1,连接PA1,A1B,则PA1=PA,设点P到AB的距 离为h,由AB=5,AD=3,SPAB= S矩形ABCD可得h=2,则AA1=4,因为PA+PB=PA1+PBA1B,所以当P为A1B与MN的交 点时,PA+PB最小,其最小值为 = ,故选D.,疑难突破 本题的突破口是根据SPAB= S矩形ABCD推出P点是在平行于
8、AB的线段上运动,从而想到利用轴对称 的性质将问题转化.,9.(2016河北,3,3分)下列图形中,既是轴对称图形,又是中心对称图形的是 ( ),答案 A 选项B只是轴对称图形,选项C和D只是中心对称图形,只有选项A既是轴对称图形,又是中心对称 图形.,10.(2015福建福州,7,3分)如图,在33的正方形网格中有四个格点A,B,C,D,以其中一点为原点,网格线所在直 线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是 ( ) A.A点 B.B点 C.C点 D.D点,答案 B 以点B为坐标原点,网格线所在直线为坐标轴,建立平面直角坐标系,则点A,C关于坐标轴
9、对称,故 选B.,11.(2019江西,10,3分)如图,在ABC中,点D是BC上的点,BAD=ABC=40,将ABD沿着AD翻折得到 AED,则CDE= .,答案 20,解析 BAD=ABD=40, ADB=180-BAD-ABD=180-40-40=100, ADC=180-100=80.AED是由ABD翻折所得的, AEDABD,ADE=ADB=100. CDE=ADE-ADC=100-80=20,即CDE=20.,12.(2019湖北黄冈,16,3分)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8.点M为AB的中点.若CMD=120,则 CD的最大值为 .,答案 14,解析
10、 如图,设点A关于CM的对称点为A,点B关于DM的对称点为B, 当A,B都在CD上时,CD有最大值. 连接MA,MB,则MACMAC,MBDMBD, CA=CA=2,BD=BD=8,AMC=AMC,BMD=BMD, M为AB的中点,MA=MA=MB=MB=4,CMD=120,AMC+BMD=60,AMC+BMD=60, AMB=60,AB=4,CD=CA+AB+BD=14.,难点突破 考虑到点A与点B是定点,点C与点D是动点,所以想到轴对称,当点A关于CM的对称点A与点B关 于DM的对称点B都在CD上时,CD有最大值,从而找到本题的突破口.,13.(2019福建,16,4分)如图,菱形ABCD
11、的顶点A在函数y= (x0)的图象上,函数y= (k3,x0)的图象关于直 线AC对称,且过B,D两点.若AB=2,BAD=30,则k= .,答案 6+2,疑难突破 本题的突破口是得到CAM=45,能将点的坐标转化为线段长,构建含30角的RtABM.,14.(2019四川成都,24,4分)如图,在边长为1的菱形ABCD中,ABC=60.将ABD沿射线BD的方向平移得到 ABD,分别连接AC,AD,BC,则AC+BC的最小值为 .,答案,解析 作直线AA,并作点C关于直线AA的对称点E,连接EA,AC,AE. 四边形ABCD为菱形,ABC=60,AB=1, AC=1,ACBD, 由平移得BCBD
12、AD,AABD, AD=BC.又EA=AC,AC+BC=EA+AD, 当E,A,D三点共线时,EA+AD的值最小. AC=AE=AD=1,DAC=DCA=60, E= DAC=30,EDC=180-E-ACD=90, ED=ECcos E=2 = ,即AC+BC的最小值为 .,方法总结 求不在同一条直线上的两条线段长的和的最小值,一般是通过轴对称转化为求一条直线上的两 条线段的长度和.,15.(2018重庆,16,4分)如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,得到AGE=30, 若AE=EG=2 厘米,则ABC的边BC的长为 厘米.,答案 (6+4 ),解析 过
13、E作EHAG于H. AGE=30,AE=EG=2 , EH= ,GH=EGcos 30=3,AG=6, GC=AG=6,易知BE=AE=EG=2 , BC=BE+EG+GC=(6+4 )厘米.,考点二 平移的概念及性质,1.(2019四川成都,4,3分)在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为 ( ) A.(2,3) B.(-6,3) C.(-2,7) D.(-2,-1),答案 A 点向右平移4个单位长度,其横坐标加4,所以平移后得到的点的坐标为(2,3),故选A.,2.(2018江西,5,3分)小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图
14、形所组成的图 形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方 形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有 ( ) A.3个 B.4个 C.5个 D.无数个,答案 C 如图所示,正方形ABCD可以向上、向下、向右以及沿射线AC或BD方向平移,平移后的两个正 方形组成轴对称图形.故选C.,3.(2016山东青岛,5,3分)如图,线段AB经过平移得到线段AB,其中点A,B的对应点分别为点A,B,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在AB上的对应点P的坐标为 ( ) A.(a-2,b+3) B.(a-
15、2,b-3) C.(a+2,b+3) D.(a+2,b-3),答案 A 线段AB向左平移2个单位长度,再向上平移3个单位长度得到线段AB,由此可知线段AB上的点P (a,b)的对应点P的坐标为(a-2,b+3),故选A.,评析 在平面直角坐标系中,点的平移与其坐标变化的关系是“上加下减,右加左减”,即点向上(或下)平 移a个单位长度,则纵坐标加a(或减a);点向右(或左)平移b个单位长度,则横坐标加b(或减b).,4.(2017山西,13,3分)如图,已知ABC三个顶点的坐标分别为A(0,4),B(-1,1),C(-2,2).将ABC向右平移4 个单位,得到ABC,点A,B,C的对应点分别为A
16、,B,C,再将ABC绕点B顺时针旋转90,得到ABC, 点A,B,C的对应点分别为A,B,C,则点A的坐标为 .,答案 (6,0),解析 如图,点A的坐标为(6,0).,5.(2019安徽,16,8分)如图,在边长为1个单位长度的小正方形组成的1212网格中,给出了以格点(网格线的交 点)为端点的线段AB. (1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD; (2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可),解析 (1)如图,线段CD即为所求作. (4分) (2)如图,菱形CDEF即为所求作(答案不唯一). (8分),6.(2
17、018福建,21,8分)如图,在RtABC中,C=90,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转 90得到,EFG由ABC沿CB方向平移得到,且直线EF过点D. (1)求BDF的大小; (2)求CG的长.,解后反思 本题考查图形的平移与旋转、平行线的性质、等腰直角三角形的判定与性质、解直角三角 形、相似三角形的判定与性质等基础知识,考查运算能力、推理能力、数形结合思想、化归与转化思想.,7.(2016江苏南京,20,8分)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究.请 根据示例图形,完成下表.,解析 (1)AB=AB;ABAB. (2)AB=AB
18、;对应线段AB和AB所在的直线相交,交点在对称轴l上. (3)l垂直平分AA,BB. (4)OA=OA;AOA=BOB.,8.(2017安徽,18,8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC和DEF(顶 点为网格线的交点),以及过格点的直线l. (1)将ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形; (2)画出DEF关于直线l对称的三角形; (3)填空:C+E= .,解析 (1)如图所示. (3分) (2)如图所示. (6分) (3)45. (8分) 提示:A1C1F1=C+E,连接A1F1,易证三角形A1F1C1是等腰直角三角形,故A1
19、C1F1=45.,解析 (1)由剪拼前后面积相等可知,拼成的正方形的边长= =4 . (3分) (2)都是平移变换. (8分) (3)如下图,两种只需对一种即可. (12分),考点三 旋转的概念及性质,1.(2019河南,10,3分)如图,在OAB中,顶点O(0,0),A(-3,4),B(3,4).将OAB与正方形ABCD组成的图形绕点O 顺时针旋转.每次旋转90,则第70次旋转结束时,点D的坐标为( ) A.(10,3) B.(-3,10) C.(10,-3) D.(3,-10),答案 D 由题意得,五边形AOBCD绕点O顺时针旋转,每次旋转90,经过4次旋转可回到初始位置,即每4次 旋转为
20、一个循环.704=172,即第70次旋转结束时与第2次旋转结束时位置相同.易得初始位置时点D的 坐标为(-3,10),又点D旋转2次,即顺时针旋转了180后的点D与点(-3,10)关于原点对称,所以第70次旋转结 束时,点D的坐标为(3,-10),故选D.,方法规律 坐标系内点的坐标变化规律探究,一般根据题中的平移、旋转等变换,确定变换规律或确定一 个循环内的次数,通过运算确定问题中的点与循环内点的对应位置,从而求得结果.,2.(2019天津,11,3分)如图,将ABC绕点C顺时针旋转得到DEC,使点A的对应点D恰好落在边AB上,点B的 对应点为E,连接BE,下列结论一定正确的是 ( ) A.
21、AC=AD B.ABEB C.BC=DE D.A=EBC,答案 D 由旋转的性质可知,AC=CD,但AC不一定等于AD, 选项A不符合题意. 由旋转的性质可知,BC=EC,但BC不一定等于DE, 选项C不符合题意. 根据旋转的性质可得,ACD=ECB,AC=CD,BC=CE, A=CDA= (180-ACD),EBC=CEB= (180-ECB), A=EBC,选项D符合题意. 根据题意无法得到ABE=90, B选项不符合题意.故选D.,3.(2018天津,4,3分)下列图形中,可以看作是中心对称图形的是 ( ),答案 A 在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图
22、形重合,那么这个 图形叫做中心对称图形,选项A中的图形符合中心对称图形的定义,故选A.,4.(2018山西,8,3分)如图,在RtABC中,ACB=90,A=60,AC=6,将ABC绕点C按逆时针方向旋转得到 ABC,此时点A恰好在AB边上,则点B与点B之间的距离为 ( ) A.12 B.6 C.6 D.6,答案 D 如图,连接BB,由旋转可知AC=AC,BC=BC, A=60, ACA为等边三角形, ACA=60, BCB=ACA=60, BCB为等边三角形, 在RtABC中,A=60,AC=6,则BC=6 . BB=BC=6 ,故选D.,5.(2017福建,10,4分)如图,网格纸上正方形
23、小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转, 分别得到线段AB和点P,则点P所在的单位正方形区域是 ( ) A.1区 B.2区 C.3区 D.4区,答案 D 连接AA,BB,分别作AA,BB的垂直平分线,两条直线相交于点O,点O就是旋转中心,旋转角为90, 连接OP,OP绕点O逆时针旋转90即可得到OP,可知点P落在4区,故选D.,6.(2017河北,5,3分)图1和图2中所有的小正方形都全等.将图1的正方形放在图2中的某一位置,使 它与原来7个小正方形组成的图形是中心对称图形,这个位置是 ( ) 图1 图2 A. B. C. D.,答案 C 根据中心对称图形的定义知当正方形放
展开阅读全文