2020年北京中考数学复习课件§4.3 四边形与多边形.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年北京中考数学复习课件§4.3 四边形与多边形.pptx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 课件 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、1.(2019北京,3,2分)正十边形的外角和为 ( ) A.180 B.360 C.720 D.1 440,北京中考题组,答案 B 任何凸多边形的外角和都为360.故选B.,2.(2018北京,5,2分)若正多边形的一个外角是60,则该正多边形的内角和为 ( ) A.360 B.540 C.720 D.900,答案 C 由多边形外角和为360,可知这个正多边形的边数为36060=6,由多边形内角和公式可知内角 和为180(6-2)=720.故选C.,3.(2017北京,6,3分)若正多边形的一个内角是150,则该正多边形的边数是 ( ) A.6 B.12 C.16 D.18,答案 B 由题意
2、得,该正多边形的每个外角均为30,则该正多边形的边数是 =12.故选B.,4.(2016北京,4,3分)内角和为540的多边形是 ( ),答案 C 设多边形的边数为n,由多边形内角和公式得(n-2)180=540,解得n=5,所以该多边形为五边形, 故选C.,5.(2019北京,14,2分)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如 图2,图3所示的正方形,则图1中菱形的面积为 .,答案 12,解析 设题图1中一个小直角三角形的两条直角边长分别为a,b,则由题图2,题图3可列方程组 解得 所以题图1中菱形的面积为 46=12.,解题关键 解决本题的关键是要分析
3、题目中已知的“5”和“1”是由怎样的线段构成的.,6.(2019北京,16,2分)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合). 对于任意矩形ABCD,下面四个结论中, 存在无数个四边形MNPQ是平行四边形; 存在无数个四边形MNPQ是矩形; 存在无数个四边形MNPQ是菱形; 至少存在一个四边形MNPQ是正方形. 所有正确结论的序号是 .,答案 ,解析 如图,由于是任意矩形,不妨设ADAB,取矩形的中心O,在AB边上任取一点M,连接MO并延长交CD于 点P,在BC边上任取一点N,连接NO并延长交AD于点Q,则四边形MNPQ是平行四边形,因为是任取,所以存
4、在 无数个四边形MNPQ是平行四边形,正确.可以构造NQ总垂直于MP,所以存在无数个四边形 MNPQ是菱 形,正确. 以点O为圆心,OM长为半径 作圆,当MO= AD时,O与矩形有六个交点,取AD与BC边上 关于O点对称的两个交点分别为Q,N,取AB,DC边上的交点分别为M,P(如图1),顺次连接这四个交点,则四边 形MNPQ为矩形;当 ADMOAO时,有8个交点,隔一个点取一个点分别为M,N,P,Q(如图2),顺次连接这四个,交点,则四边形MNPQ为矩形.所以存在无数个四边形 MNPQ是矩形,正确. 图1 图2,当四边形MNPQ是正方形时,MQ=PQ,MQP=90, 易证AMQDQP,AM=
5、QD,AQ=PD, 易证BOMDOP,PD=BM,AQ=BM,AB=AM+BM=QD+AQ=AD, 四边形ABCD是正方形,与任意矩形ABCD矛盾,所以错误.所以正确结论的序号是.,思路分析 本题需要借助(特殊)平行四边形与对角线相关的判定方法来解决.,解题关键 解决本题的关键是用对角线的关系判定四边形的形状画图时一定要关注AC,BD的交点O.,7.(2015北京,12,3分)下图是由射线AB,BC,CD,DE,EA组成的平面图形,则1+2+3+4+5= .,答案 360,解析 多边形的外角和为360,1+2+3+4+5=360.,8.(2019北京,20,5分)如图,在菱形ABCD中,AC为
6、对角线,点E,F分别在AB,AD上,BE=DF,连接EF. (1)求证:ACEF; (2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G= ,求AO的长.,解析 (1)证明:四边形ABCD为菱形, AB=AD,AC平分BAD.BE=DF,AE=AF.ACEF. (2)四边形ABCD为菱形,AO=OC,OD= BD,ACBD. EFAC,BDEG.G=BDC.BD=4,OD=2. 在RtCOD中,tanCDO=tan G= ,可得OC=1.AO=1.,9.(2016北京,19,5分)如图,四边形ABCD是平行四边形,AE平分BAD,交DC的延长线于点E.求证:DA=D
7、E.,证明 四边形ABCD为平行四边形, ABCD.BAE=E. AE平分BAD,BAE=DAE. E=DAE,DA=DE.,思路分析 本题要证明在同一个三角形中的两条线段相等,可以考虑借助角相等来证明.,解题关键 解决本题的关键是要掌握平行四边形的性质,尤其是题目给出了角平分线,就需要多思考平行 四边形与角有关的性质.,10.(2018北京,21,5分)如图,在四边形ABCD中,ABDC,AB=AD,对角线AC,BD交于点O,AC平分BAD,过点 C作CEAB交AB的延长线于点E,连接OE. (1)求证:四边形ABCD是菱形; (2)若AB= ,BD=2,求OE的长.,解析 (1)证明:AB
8、CD,OAB=DCA. AC平分BAD,OAB=DAC, DCA=DAC,CD=AD. 又AB=AD,AB=CD,四边形ABCD为平行四边形. 又CD=AD=AB,四边形ABCD为菱形. (2)四边形ABCD为菱形,OA=OC,BDAC. CEAE,OE=AO=OC.BD=2,OB= BD=1. 在RtAOB中,AB= ,OB=1, OA= =2,OE=2.,11.(2017北京,22,5分)如图,在四边形ABCD中,BD为一条对角线,ADBC,AD=2BC,ABD=90,E为AD的中 点,连接BE. (1)求证:四边形BCDE为菱形; (2)连接AC,若AC平分BAD,BC=1,求AC的长.
9、,12.(2015北京,22,5分)在ABCD中,过点D作DEAB于点E,点F在边CD上,DF=BE,连接AF,BF. (1)求证:四边形BFDE是矩形; (2)若CF=3,BF=4,DF=5,求证:AF平分DAB.,思路分析 (1)要证四边形BFDE是矩形,先证其是平行四边形,再根据有一个角是直角的平行四边形为矩形证明. (2)由勾股定理求BC的长,证明ADF为等腰三角形,结合ABDC,证明DAF=FAB.,解题技巧 矩形是特殊的平行四边形,其内角为直角,故常与勾股定理结合.,考点一 多边形,教师专用题组,1.(2019河北,1,3分)下列图形为正多边形的是 ( ),答案 D 正多边形的各边
10、相等,各角相等,故选D.,2.(2019福建,5,4分)已知正多边形的一个外角是36,则该正多边形的边数为 ( ) A.12 B.10 C.8 D.6,答案 B 设该正多边形的边数为n,则n= =10,故选B.,3.(2019云南,9,4分)一个十二边形的内角和等于 ( ) A.2 160 B.2 080 C.1 980 D.1 800,答案 D 根据多边形的内角和公式(n-2)180,可得十二边形的内角和等于(12-2)180=1 800.故选D.,4.(2017新疆乌鲁木齐,5,4分)如果正n边形每一个内角等于与它相邻外角的2倍,则n的值是 ( ) A.4 B.5 C.6 D.7,答案 C
11、 设正n边形外角的度数为x,则与它相邻内角的度数为2x,所以x+2x=180,解得x=60.因为36060= 6,所以这个正n边形是正六边形,故选C.,5.(2018陕西,12,3分)如图,在正五边形ABCDE中,AC与BE相交于点F,则AFE的度数为 .,答案 72,解析 五边形ABCDE是正五边形, EAB=ABC= =108, BA=BC,BAC=BCA=36, 同理可得ABE=36,AFE=ABF+BAF=36+36=72.,6.(2018贵州贵阳,13,4分)如图,点M,N分别是正五边形ABCDE的两边AB,BC上的点,且AM=BN,点O是正五边 形的中心,则MON的度数是 度.,答
12、案 72,7.(2018河北,19,6分)如图1,作BPC平分线的反向延长线PA,现要分别以APB,APC,BPC为内角作正 多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案. 例如:若以BPC为内角,可作出一个边长为1的正方形,此时BPC=90,而 =45是360(多边形外角和)的 ,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示. 图2中的图案外轮廓周长是 ; 在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .,图1,图2,答案 14;21,解析 题图2中的图案由两个边长均为1的正八边形和1个边长为1的
13、正方形组成,且三个正多边形三边相 连,题图2中的图案外轮廓周长是6+6+2=14.由于三个正多边形的边长均为1,显然以APB,APC为内角的 两个正多边形的边数越多(即以BPC为内角的正多边形的边数越少),会标的外轮廓周长越大.当以BPC 为内角的正多边形为等边三角形时,会标的外轮廓周长最大.此时APB=150,以APB,APC为内角的两 个正多边形均为正十二边形,会标的外轮廓周长为10+10+1=21.,8.(2017福建,15,4分)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所 示,则AOB等于 度.,答案 108,解析 如图,正五边形中每一个内角都是10
14、8, OCD=ODC=180-108=72.COD=36. AOB=360-108-108-36=108.,考点二 (特殊)平行四边形,1.(2019内蒙古包头,11,3分)如图,在正方形ABCD中,AB=1,点E、F分别在边BC和CD上,AE=AF,EAF=60, 则CF的长是 ( ) A. B. C. -1 D.,答案 C 如图,连接EF,在正方形ABCD中,AB=AD,B=D=90,又AE=AF,RtABERtADF,BE =DF,又BC=CD,CE=CF.EAF=60,AEF是等边三角形.设CE=x(0x1),C=90,EF= x, 则AE= x.在RtABE中,12+(1-x)2=(
15、 x)2,化简得x2+2x-2=0,解得x= -1或x=-1- (舍),CF=CE= -1.故 选C.,2.(2018重庆,6,4分)下列命题正确的是 ( ) A.平行四边形的对角线互相垂直平分 B.矩形的对角线互相垂直平分 C.菱形的对角线互相平分且相等 D.正方形的对角线互相垂直平分,答案 D 平行四边形的对角线互相平分,不一定垂直,选项A错误;矩形的对角线互相平分且相等,不一定 垂直,选项B错误;菱形的对角线互相垂直平分,不一定相等,选项C错误;正方形的对角线互相垂直平分,选项 D正确.故选D.,3.(2018安徽,9,4分)ABCD中,E,F是对角线BD上不同的两点.下列条件中, 得出
16、四边形AECF一定为平 行四边形的是 ( ) A.BE=DF B.AE=CF C.AFCE D.BAE=DCF,思路分析 依据平行四边形的定义或判定定理进行判断.,4.(2018陕西,8,3分)如图,在菱形ABCD中,点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、 FG、GH和HE.若EH=2EF,则下列结论正确的是 ( ) A.AB= EF B.AB= EF C.AB=2EF D.AB= EF,答案 D 如图,连接AC、BD交于O, 四边形ABCD是菱形, ACBD,OA=OC,OB=OD, 点E、F、G、H分别是边AB、BC、CD和DA的中点, EF= AC,EH= BD
17、,EH=2EF,BD=2AC,OB=2OA, AB= = OA,易知OA=EF,AB= EF,故选D.,思路分析 首先根据菱形的性质得到ACBD,OA=OC,OB=OD,然后根据三角形中位线定理得出EF= AC, EH= BD,进而得到OB=2OA,最后根据勾股定理求得AB= OA,即得AB= EF.,5.(2017河南,7,3分)如图,在ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定ABCD是菱形的 只有 ( ) A.ACBD B.AB=BC C.AC=BD D.1=2,答案 C 根据对角线互相垂直的平行四边形是菱形可得选项A正确;根据一组邻边相等的平行四边形是 菱形可得选项B
18、正确;对角线相等的平行四边形为矩形,故选项C错误;因为CDAB,所以2=DCA,再由 1=2,可得1=DCA,所以AD=CD,由一组邻边相等的平行四边形是菱形,得ABCD是菱形,D正确.故 选C.,6.(2016河北,13,2分)如图,将ABCD沿对角线AC折叠,使点B落在点B处.若1=2=44,则B为 ( ) A.66 B.104 C.114 D.124,答案 C 设AB与CD相交于点P, 由折叠知CAB=CAB,由ABCD,得1=BAB, CAB=CAB= 1=22. 在ABC中,CAB=22,2=44, B=180-22-44=114.,7.(2015江西南昌,5,3分)如图,小贤为了体
19、验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD, B与D两点之间用一根橡皮筋 拉直固定,然后向右扭动框架,观察所得四边形的变化.下列判断错误的是 ( ) A.四边形ABCD由矩形变为平行四边形 B.BD的长度增大 C.四边形ABCD的面积不变 D.四边形ABCD的周长不变,答案 C 向右扭动框架ABCD的过程中,AD与BC的距离逐渐减小,即ABCD的高发生变化,所以面积改 变,选项C错误,故选C.,8.(2019湖北武汉,14,3分)如图,在ABCD中,E,F是对角线AC上两点,AE=EF=CD,ADF=90,BCD=63,则 ADE的大小是 .,答案 21,解析 设ADE=x,
20、AE=EF,ADF=90,DE=AE=EF. DAE=x.DEC=2x. 又AE=EF=CD,DC=DE.DCE=2x. ADBC,BCA=DAE=x. BCD=3x=63.x=21.即ADE=21.,9.(2019内蒙古呼和浩特,15,3分)已知正方形ABCD的面积是2,E为正方形一边BC在从B到C方向的延长线上 的一点.若CE= ,连接AE,与正方形另外一边CD交于点F,连接BF并延长,与线段DE交于点G,则BG的长为 .,答案,解析 如图,延长BG,AD交于点Q.正方形ABCD的面积为2,边长为 ,AQBC,CFAB. CE=BC= ,CF=DF= AB,易证DQFCBF,DQGEBG,
21、DQ=BC= ,在RtABQ中,由勾 股定理得BQ= = . = , = ,BG= .,10.(2019四川成都,14,4分)如图,ABCD的对角线AC与BD相交于点O,按以下步骤作图:以点A为圆心,以 任意长为半径作弧,分别交AO,AB于点M,N;以点O为圆心,以AM长为半径作弧,交OC于点M;以点M为 圆心,以MN长为半径作弧,在COB内部交前面的弧于点N;过点N作射线ON交BC于点E.若AB=8,则线段 OE的长为 .,答案 4,解析 由作图方法可得COE=CAB,OEAB.在ABCD中,AO=CO,线段OE为ABC的中位线, 线段OE的长为线段AB长的一半,为4.,思路分析 根据作图方
22、法判断得出COE=CAB,由平行四边形的性质以及平行线的判定定理得出线段 OE是ABC的中位线,进而求得线段OE的长度.,11.(2019福建,14,4分)在平面直角坐标系xOy中,OABC的三个顶点分别为O(0,0),A(3,0),B(4,2),则其第四个 顶点C的坐标是 .,答案 (1,2),解析 O(0,0),A(3,0),OA=3.四边形OABC是平行四边形,BCOA.B(4,2),C(1,2).,12.(2019河南,15,3分)如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE= a.连接AE,将ABE沿AE折 叠,若点B的对应点B落在矩形ABCD的边上,则a的值为
23、 .,答案 或,解题关键 本题是以矩形为背景的折叠型题目,由于未指明折叠后点B的具体位置,所以分情况讨论是解决 本题的关键.根据题意得,当点B在矩形边上时,有两种可能:当点B在AD上时,由四边形ABEB是正方形可 求a的值;当点B在边CD上时,由“K字模型”中的相似三角形性质结合勾股定理可求a的值.,13.(2018湖北武汉,14,3分)以正方形ABCD的边AD为边作等边ADE,则BEC的度数是 .,答案 30或150,解题关键 熟记正方形的性质、等边三角形的性质并准确作图是解题的关键.,易错警示 此题没有给出图形,需按点E的位置分类讨论,学生往往只画出点E在正方形外而导致漏解.,14.(20
展开阅读全文