书签 分享 收藏 举报 版权申诉 / 122
上传文档赚钱

类型2020年安徽中考数学复习课件§6.1 图形的轴对称、平移与旋转.pptx

  • 上传人(卖家):小豆芽
  • 文档编号:353953
  • 上传时间:2020-03-11
  • 格式:PPTX
  • 页数:122
  • 大小:3.28MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2020年安徽中考数学复习课件§6.1 图形的轴对称、平移与旋转.pptx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    中考 数学 课件 下载 _一轮复习_中考复习_数学_初中
    资源描述:

    1、1.(2017安徽,14,5分)在三角形纸片ABC中,A=90,C=30,AC=30 cm.将该纸片沿过点B的直线折叠,使点 A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去CDE后得到双层BDE(如图2),再沿着过BDE某 顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长 为 cm.,A组 安徽中考题组,答案 40或 (只写出一个正确答案得3分),解析 由已知可知ADBEDB,又A=90,C=30,所以ABD=EBD=C=30,则CD=BD,设AD= DE=x cm,则CD=(30-x)cm,在直角三角形ABD中,sin 30= = = ,

    2、解得x=10,所以BD=20 cm,AB=10 cm.经分析可知满足题意的剪法有以下两种:取BD的中点F,连接EF,AF,沿EF剪开所得四边形ADEF是平 行四边形,也是菱形,其边长DE为10 cm,故其周长为40 cm;作EDB的平分线DM,沿DM剪开所得四边形 是平行四边形,也是菱形,其边长DM= = = cm,故其周长为4 = cm.综上,所求周长 为40 cm或 cm.,思路分析 由轴对称的性质得ADBEDB,由已知可求AD,AB,BD,考虑到在三角形BDE中,BED=90, EBD=30,BDE=60,故沿BD上的中线或EDB的平分线剪开可得平行四边形,且都为菱形,求出边长即 可求得

    3、周长.,2.(2019安徽,16,8分)如图,在边长为1个单位长度的小正方形组成的1212网格中,给出了以格点(网格线的交 点)为端点的线段AB. (1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD; (2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可),解析 (1)如图,线段CD即为所求作. (4分) (2)如图,菱形CDEF即为所求作(答案不唯一). (8分),3.(2017安徽,18,8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC和DEF(顶 点为网格线的交点),以及过格点的直线l. (1)将ABC向

    4、右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形; (2)画出DEF关于直线l对称的三角形; (3)填空:C+E= .,解析 (1)如图所示. (3分) (2)如图所示. (6分) (3)45. (8分) 提示:A1C1F1=C+E,连接A1F1,易证三角形A1F1C1是等腰直角三角形且A1C1F1=45.,4.(2016安徽,17,8分)如图,在边长为1个单位长度的小正方形组成的1212网格中,给出了四边形ABCD的两 条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC. (1)试在图中标出点D,并画出该四边形的另两条边; (2)将四边形ABCD向下平移5个单

    5、位,画出平移后得到的四边形ABCD.,解析 (1)点D及四边形ABCD另两条边如图所示. (4分) (2)得到的四边形ABCD如图所示. (8分),5.(2015安徽,17,8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC(顶点是网格 线的交点). (1)请画出ABC关于直线l对称的A1B1C1; (2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点 A2B2C2,使A2B2=C2B2.,解析 (1)A1B1C1如图所示. (4分) (2)线段A2C2和A2B2C2如图所示.(符合条件的A2B2C2不唯一) (8分),

    6、考点一 图形的轴对称,B组 20152019年全国中考题组,1.(2019内蒙古呼和浩特,2,3分)甲骨文是我国的一种古代文字,下面是“北”“比”“鼎”“射”四个字的 甲骨文,其中不是轴对称图形的是 ( ),答案 B 根据四个字的甲骨文的特点,“比”字的甲骨文不是轴对称图形,故选B.,2.(2019湖北武汉,4,3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是 轴对称图形的是 ( ),答案 D 选项A、B、C中的图形都不是轴对称图形,选项D中的图形是轴对称图形.故选D.,3.(2019河北,9,3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂

    7、黑n个小正三角形,使 它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为 ( ) A.10 B.6 C.3 D.2,答案 C 正三角形恰有三条对称轴,所以联想把图中的三个小正三角形涂黑,而当n=1或2时,不能出现符 合题意的新图案,所以n的最小值为3,故选C.,4.(2018河北,3,3分)图中由“ ”和“ ”组成轴对称图形,该图形的对称轴是直线 ( ) A.l1 B.l2 C.l3 D.l4,答案 C 如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这个图形叫做轴对称图形,由此 知该图形的对称轴是直线l3,故选C.,5.(2018吉林,5,2分)如图,将ABC折叠,

    8、使点A与BC边中点D重合,折痕为MN.若AB=9,BC=6,则DNB的周长 为 ( ) A.12 B.13 C.14 D.15,答案 A 由折叠性质可得AN=DN,DN+NB=AN+NB=AB=9.D为BC中点,DB=3,DNB的周长为12.,思路分析 利用折叠性质易推出AN=DN,从而三角形DNB的周长即为AB+BD的长.,6.(2018天津,10,3分)如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕为 BD,则下列结论一定正确的是 ( ) A.AD=BD B.AE=AC C.ED+EB=DB D.AE+CB=AB,答案 D 由折叠的性质知,BC=BE,AE

    9、+CB=AB.故选D.,考点二 图形的平移,1.(2019四川成都,4,3分)在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为 ( ) A.(2,3) B.(-6,3) C.(-2,7) D.(-2,-1),答案 A 点向右平移4个单位长度,其横坐标加4,所以平移后得到的点的坐标为(2,3),故选A.,2.(2019湖北黄冈,5,3分)已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A的坐标是 ( ) A.(6,1) B.(-2,1) C.(2,5) D.(2,-3),答案 D 将点A向下平移4个单位长度可得A(2,-3),故选D.,3.(2018江西

    10、,5,3分)小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图 形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方 形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有( ) A.3个 B.4个 C.5个 D.无数个,答案 C 如图所示,正方形ABCD可以向上、向下、向右以及沿射线AC或BD方向平移,平移后的两个正 方形组成轴对称图形.故选C.,4.(2018天津,16,3分)将直线y=x向上平移2个单位长度,平移后直线的解析式为 .,答案 y=x+2,解析 根据一次函数图象平移规律“上加下减常数项”,将

    11、直线y=x向上平移2个单位长度,所得直线的解 析式为y=x+2.,5.(2017山西,13,3分)如图,已知ABC三个顶点的坐标分别为A(0,4),B(-1,1),C(-2,2).将ABC向右平移4个单 位,得到ABC,点A,B,C的对应点分别为A,B,C,再将ABC绕点B顺时针旋转90,得到ABC,点A,B, C的对应点分别为A,B,C,则点A的坐标为 .,答案 (6,0),解析 如图,点A的坐标为(6,0).,考点三 图形的旋转,1.(2019河南,10,3分)如图,在OAB中,顶点O(0,0),A(-3,4),B(3,4).将OAB与正方形ABCD组成的图形绕点O 顺时针旋转.每次旋转9

    12、0,则第70次旋转结束时,点D的坐标为( ) A.(10,3) B.(-3,10) C.(10,-3) D.(3,-10),答案 D 由题意得,五边形AOBCD绕点O顺时针旋转,每次旋转90,经过4次旋转可回到初始位置,即每4次 旋转为一个循环.704=172,即第70次旋转结束时与第2次旋转结束时位置相同.易得初始位置时点D的 坐标为(-3,10),又点D旋转2次,即顺时针旋转了180后的点D与点(-3,10)关于原点对称,所以第70次旋转结 束时,点D的坐标为(3,-10),故选D.,2.(2018天津,4,3分)下列图形中,可以看作是中心对称图形的是 ( ),答案 A 在平面内,把一个图

    13、形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个 图形叫做中心对称图形,选项A中的图形符合中心对称图形的定义,故选A.,3.(2017福建,10,4分)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转, 分别得到线段AB和点P,则点P所在的单位正方形区域是 ( ) A.1区 B.2区 C.3区 D.4区,答案 D 连接AA,BB,分别作AA,BB的垂直平分线,两条直线相交于点O,点O就是旋转中心,旋转角为90, 连接OP,OP绕点O逆时针旋转90即可得到OP,可知点P落在4区,故选D.,4.(2018山西,8,3分)如图,在RtABC中,ACB

    14、=90,A=60,AC=6,将ABC绕点C按逆时针方向旋转得到 ABC,此时点A恰好在AB边上,则点B与点B之间的距离为 ( ) A.12 B.6 C.6 D.6,答案 D 如图,连接BB,由旋转可知AC=AC,BC=BC, A=60, ACA为等边三角形, ACA=60, BCB=ACA=60, BCB为等边三角形, 在RtABC中,A=60,AC=6, 则BC=6 . BB=BC=6 , 故选D.,5.(2019内蒙古包头,17,3分)如图,在ABC中,CAB=55,ABC=25.在同一平面内,将ABC绕点A逆时针 旋转70得到ADE,连接EC,则tanDEC的值是 .,答案 1,解析 在

    15、ACB中,ACB=180-55-25=100,由旋转的性质可得AED=ACB =100,CAE=70,AE= AC,AEC= =55,DEC=100-55=45,tanDEC=1.,解题关键 抓住旋转的性质得出AEC是等腰三角形且CAE=70是解答本题的关键.,6.(2019福建,21,8分)在RtABC中,ABC=90,ACB=30.将ABC绕点C顺时针旋转一个角度得到 DEC,点A,B的对应点分别为D,E. (1)若点E恰好落在边AC上,如图1,求ADE的大小; (2)若=60,F为AC的中点,如图2,求证:四边形BEDF是平行四边形.,解析 (1)在RtABC中,ABC=90,ACB=3

    16、0,BAC=60. 由旋转性质得,DC=AC,DCE=ACB=30. DAC=ADC= (180-DCE)=75, 又EDC=BAC=60, ADE=ADC-EDC=15. (2)证明:在RtABC中,ABC=90,ACB=30, AB= AC. F是AC的中点,BF=FC= AC, FBC=ACB=30,AB=BF. 由旋转性质得AB=DE,DEC=ABC=90,BCE=ACD=60, DE=BF. 延长BF交EC于点G,则BGE=GBC+GCB=90,BGE=DEC,DEBF, 四边形BEDF是平行四边形.,一题多解 (2)在RtABC中,ABC=90,ACB=30, AB= AC,A=6

    17、0. F是AC的中点,AF=BF=FC= AC,AB=BF=FC. 由旋转性质得AB=DE,EDC=A=60,ACD=60. DE=BF,DE=FC,EDC=ACD. CD=DC,EDCFCD.CE=DF. 由旋转性质得BEC为等边三角形, CE=BE,DF=BE. 又DE=BF,四边形BEDF是平行四边形.,7.(2018四川成都,27,10分)在RtABC中,ACB=90,AB= ,AC=2,过点B作直线mAC,将ABC绕点C顺 时针旋转得到ABC(点A,B的对应点分别为A,B),射线CA,CB分别交直线m于点P,Q. (1)如图1,当P与A重合时,求ACA的度数; (2)如图2,设AB与

    18、BC的交点为M,当M为AB的中点时,求线段PQ的长; (3)在旋转过程中,当点P,Q分别在CA,CB的延长线上时,试探究四边形PABQ的面积是否存在最小值.若存 在,求出四边形PABQ的最小面积;若不存在,请说明理由.,解析 (1)由旋转的性质得AC=AC=2, ACB=90,AB= ,AC=2,BC= = , ACB=90,mAC,ABC=90, cosACB= = , ACB=30, ACA=60. (2)M为AB的中点,ACB=90,MA=MB=MC, ACM=MAC, 由旋转的性质得MAC=A,A=ACM, tanPCB=tanA= ,PB= BC= , tanBQC=tanPCB=

    19、,BQ=BC = =2,PQ=PB+BQ= . (3)S四边形PABQ=SPCQ-SACB=SPCQ- , S四边形PABQ最小即SPCQ最小, SPCQ= PQBC= PQ. 取PQ的中点G,连接CG. PCQ=90, CG= PQ. 当CG最小时,PQ最小,CGPQ, 即CG与CB重合时,CG最小, CGmin= ,PQmin=2 , (SPCQ)min=3,(S四边形PABQ)min=3- .,思路分析 (1)在RtABC中,由勾股定理得BC= ,根据旋转知AC=AC=2,解直角ABC,得ACB=30,所 以ACA=60;(2)根据M为AB的中点,可得ACM=MAC=A,且A=BQC,解

    20、RtPBC,RtBQC,求 出PB= ,BQ=2,进而得出PQ=PB+BQ= ;(3)依据S四边形PABQ=SPCQ-SAC B=SPCQ- ,得当SPCQ最小时,S四边形PABQ最 小,又SPCQ= PQBC= PQ,求出PQ的最小值即可得到SPCQ的最小值为3,则四边形PABQ的最小面积是3- .,解后反思 本题是以直角三角形旋转为背景的几何综合题,主要考查了旋转的性质,平行线的性质,解直角 三角形,直角三角形的性质等,根据直线mAC以及旋转变换中相等的线段和相等的角,求PQC中角的大 小和边长是解题的关键.,考点一 图形的轴对称,C组 教师专用题组,1.(2019福建,3,4分)下列图形

    21、中,一定既是轴对称图形又是中心对称图形的是 ( ) A.等边三角形 B.直角三角形 C.平行四边形 D.正方形,答案 D A中的图形是轴对称图形,但不是中心对称图形;B中的图形不一定是轴对称图形,不是中心对称 图形;C中的图形是中心对称图形,但不一定是轴对称图形,故选D.,2.(2018重庆,2,4分)下列图形中一定是轴对称图形的是 ( ),答案 D 根据轴对称图形的概念可得矩形一定是轴对称图形.故选D.,解题关键 判断轴对称图形的关键是寻找对称轴.,3.(2017四川绵阳,2,3分)下列图案中,属于轴对称图形的是 ( ),答案 A A选项是轴对称图形,共有5条对称轴;B、D选项既不是轴对称图

    22、形,也不是中心对称图形;C选项 是中心对称图形,不是轴对称图形,故选A.,4.(2018广东广州,2,3分)如图所示的五角星是轴对称图形,它的对称轴共有 ( ) A.1条 B.3条 C.5条 D.无数条,答案 C 如图所示,五角星的对称轴共有5条.,5.(2017北京,5,3分)下列图形中,是轴对称图形但 中心对称图形的是 ( ),答案 A 选项A中的图形是轴对称图形但不是中心对称图形;选项B、D中的图形既是轴对称图形又是中 心对称图形;选项C中的图形是中心对称图形但不是轴对称图形.故选A.,6.(2017天津,3,3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图

    23、形的是 ( ),答案 C 根据轴对称图形的概念可得,选项A、B、D中的汉字都不是轴对称图形,只有选项C中的汉字是 轴对称图形,故选C.,7.(2016吉林,14,3分)在三角形纸片ABC中,C=90,B=30,点D(不与B,C重合)是BC上任意一点.将此三角 形纸片按下列方式折叠.若EF的长度为a,则DEF的周长为 (用含a的式子表示).,答案 3a,解析 易知FDC=C=90, FDB=90. B=30, 在RtBDF中,BFD=60. EDB=B=30, DEF=60. DEF是等边三角形. DEF的周长是3a.,评析 本题考查折叠的性质,等边三角形的判定和性质,属容易题.,8.(2016

    24、湖北武汉,14,3分)如图,在ABCD中,E为边CD上一点,将ADE沿AE折叠至ADE处,AD与CE交于 点F,若B=52,DAE=20,则FED的大小为 .,答案 36,解析 四边形ABCD是平行四边形,B=52,D=52,DAE=20,AED=180-20-52=108,AEC=20+52=72.由折叠的性质可得AED=AED=108,FED=AED-AEC=108-72=36.,评析 本题是平行四边形与折叠相结合的问题,要熟练掌握平行四边形的性质,解决折叠问题的关键是折 叠前后的图形全等,把对应边和对应角进行转化.,9.(2015宁夏,15,3分)如图,在矩形ABCD中,AB=3,BC=

    25、5,在CD上任取一点E,连接BE,将BCE沿BE折叠,使点 C恰好落在AD边上的点F处,则CE的长为 .,答案,解析 设CE=x,在矩形ABCD中, AB=3,BC=5, AD=BC=5,CD=AB=3, 则ED=3-x. 由折叠的性质可知,BF=BC=5,FE=CE=x. 在RtABF中,AF= =4, FD=5-4=1.在RtDEF中,有DF2+DE2=EF2, 即12+(3-x)2 =x2, 解得x= , 即CE的长为 .,考点二 图形的平移,1.(2018海南,3,4分)如图,在平面直角坐标系中,ABC位于第一象限,点A的坐标是(4,3),把ABC向左平移6 个单位长度,得到A1B1C

    26、1,则点B1的坐标是 ( ) A.(-2,3) B.(3,-1) C.(-3,1) D.(-5,2),答案 C 根据点A的坐标可得点B(3,1),当三角形ABC向左平移6个单位长度时,点B向左平移6个单位长度, 得B1(-3,1),故选C.,2.(2016山东青岛,5,3分)如图,线段AB经过平移得到线段AB,其中点A,B的对应点分别为点A,B,这四个点都 在格点上.若线段AB上有一个点P(a,b),则点P在AB上的对应点P的坐标为 ( ) A.(a-2,b+3) B.(a-2,b-3) C.(a+2,b+3) D.(a+2,b-3),答案 A 线段AB向左平移2个单位长度,再向上平移3个单位

    27、长度得到线段AB,由此可知线段AB上的点P (a,b)的对应点P的坐标为(a-2,b+3),故选A.,评析 在平面直角坐标系中,点的平移与其坐标变化的关系是“上加下减,右加左减”,即点向上(或下)平 移a个单位长度,则纵坐标加a(或减a);点向右(或左)平移b个单位长度,则横坐标加b(或减b).,3.(2019天津,24,10分)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,ABO=30.矩形CODE 的顶点D,E,C分别在OA,AB,OB上,OD=2. (1)如图1,求点E的坐标; (2)将矩形CODE沿x轴向右平移,得到矩形CODE,点C,O,D,E的对应点分别为C,

    28、O,D,E.设OO=t,矩形CO DE与ABO重叠部分的面积为S. 如图2,当矩形CODE与ABO重叠部分为五边形时,CE,ED分别与AB相交于点M,F,试用含有t的式子 表示S,并直接写出t的取值范围; 当 S5 时,求t的取值范围(直接写出结果即可).,解析 (1)由点A(6,0),得OA=6, 又OD=2,AD=OA-OD=4, 在矩形CODE中,有EDCO,得AED=ABO=30, 在RtAED中,AE=2AD=8, 由勾股定理,得ED= =4 , 点E的坐标为(2,4 ). (2)由平移知,OD=2,ED=4 ,ME=OO=t, 由EDBO,得EFM=ABO=30, 在RtMFE中,

    29、MF=2ME=2t, 由勾股定理,得FE= = t, SMFE= MEFE= t t= t2, S矩形CODE=ODED=8 ,S=S矩形CODE-SMFE=8 - t2, S=- t2+8 ,其中t的取值范围是0t2. t6- . 提示:当0t2时,S=- t2+8 , t=0时,Smax=8 ;t=2时,Smin=6 ,6 S8 ,不在范围内. 当2t4时,如图,OA=6-t,DA=4-t, 根据勾股定理得ON= (6-t),DF= (4-t),S= (6-t)+ (4-t)2=-2 t+10 , 2 S6 . 当S=5 时,t= , t4. 当4t6时,如图,OA=6-t, 根据勾股定理

    30、得ON= (6-t), S= (6-t) (6-t)= t2-6 t+18 ,0S2 . 当S= 时,t1=6+ (舍去),t2=6- ,4t6- . 综上所述, t6- .,易错警示 此题为动态几何问题,需按矩形CODE与ABO重叠部分的形状变化分类讨论,若只画出其中 一种情况,则会因为考虑不全而产生错误.,4.(2018广西南宁,21,8分)如图,在平面直角坐标系中,已知ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3). (1)将ABC向下平移5个单位后得到A1B1C1,请画出A1B1C1; (2)将ABC绕原点O逆时针旋转90后得到A2B2C2,请画出A2B2C2; (

    31、3)判断以O,A1,B为顶点的三角形的形状.(无需说明理由),解析 (1)如图所示,A1B1C1即为所求. (2)如图所示,A2B2C2即为所求. (3)三角形的形状为等腰直角三角形. (提示:可求出OB,OA1的长及其夹角),5.(2016广东,25,9分)如图,BD是正方形ABCD的对角线,BC=2.边BC在其所在的直线上平移,将通过平移得到 的线段记为PQ,连接PA、QD,并过点Q作QOBD,垂足为O,连接OA、OP. (1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形; (2)请判断OA、OP之间的数量关系和位置关系,并加以证明; (3)在平移变换过程中,设y=SOPB,

    32、BP=x(0x2),求y与x之间的函数关系式,并求出y的最大值.,解析 (1)四边形APQD是平行四边形. (1分) (2)OA=OP且OAOP.证明如下: 当BC向右平移时,如图, 四边形ABCD是正方形, AB=BC,ABD=CBD=45. PQ=BC,AB=PQ. QOBD,BOQ=90, BQO=90-CBD=45,BQO=CBD=ABD=45, OB=OQ. 在ABO和PQO中, ABOPQO(SAS). (3分) OA=OP,AOB=POQ. POQ+BOP=BOQ=90, AOB+BOP=90, 即AOP=90. OAOP, OA=OP且OAOP. (4分) 当BC向左平移时,如

    33、图,同理可证,ABOPQO(SAS). OA=OP,AOB=POQ, AOP+POB=POB+BOQ, AOP=BOQ=90, OAOP, OA=OP且OAOP. (5分) (3)过点O作OEBC于E. 在RtBOQ中,OB=OQ,OE= BQ. 当BC向右平移时,如图, (6分) BQ=BP+PQ=x+2, OE= (x+2). y=SOPB= BPOE= x (x+2), y= x2+ x(0x2). 当x=2时,y有最大值2. (7分),当BC向左平移时,如图,BQ=PQ-PB=2-x, OE= (2-x). y=SOPB= BPOE= x (2-x), y=- x2+ x(0x2).

    34、当x=1时,y有最大值 . (8分) 综上所述,线段BC在其所在直线平移过程中,OPB的面积能够取得最大值,最大值为2(参考下图). (9分),评析 本题考查对正方形、直角三角形和平行四边形基本性质的理解与应用,考查数形结合思想和分类讨 论思想.,6.(2015福建龙岩,22,12分)下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方 形所得,该六边形按一定的方法可剪拼成一个正方形. (1)根据剪拼前后图形的面积关系求出拼成的正方形的边长; (2)如图甲,把六边形ABCDEF沿EH,BG剪成三部分,请在图甲中画出将与拼成的正方形,然后 标出变动后的位置,并指出属于旋转、

    35、平移和轴对称中的哪一种图形变换;,(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.,解析 (1)由剪拼前后面积相等可知,拼成的正方形的边长= =4 . (3分) (2) 都是平移变换. (8分) (3)如图(答案不唯一).,(12分),考点三 图形的旋转,1.(2019吉林,4,2分)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少 为 ( ) A.30 B.90 C.120 D.180,答案 C 图形中有三个箭头,所以与自身重合的旋转角度至少为3603=120.故选C.,2.(2018云南,11,4分)下列图形既是轴对称图

    36、形,又是中心对称图形的是 ( ) A.三角形 B.菱形 C.角 D.平行四边形,答案 B 三角形不一定是轴对称图形,且不是中心对称图形;菱形既是轴对称图形,又是中心对称图形;角 是轴对称图形,但不是中心对称图形;平行四边形是中心对称图形,但不一定是轴对称图形.故选B.,3.(2017河北,5,3分)图1和图2中所有的小正方形都全等.将图1的正方形放在图2中的某一位置,使 它与原来7个小正方形组成的图形是中心对称图形,这个位置是 ( ) A. B. C. D.,答案 C 根据中心对称图形的定义知当正方形放在的位置时,可使它与原来的7个小正方形组成的图 形是中心对称图形.故选C.,4.(2017黑

    37、龙江哈尔滨,3,3分)下列图形中,既是轴对称图形又是中心对称图形的是 ( ),答案 D 选项A、B中的图形是轴对称图形,不是中心对称图形; 选项C中的图形是中心对称图形,不是轴对称图形; 选项D中的图形既是轴对称图形又是中心对称图形,故选D.,5.(2019江西,20,8分)图1是一台实物投影仪,图2是它的示意图,折线BAO表示固定支架,AO垂直水平桌 面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测 量:AO=6.8 cm,CD=8 cm,AB=30 cm,BC=35 cm.(结果精确到0.1) (1)如图2,ABC=70,BCOE.

    38、 填空:BAO= ; 求投影探头的端点D到桌面OE的距离; (2)如图3,将(1)中的BC向下旋转,当投影探头的端点D到桌面OE的距离为6 cm时,求ABC的大小. (参考数据:sin 700.94,cos 200.94,sin 36.80.60,cos 53.20.60),解析 (1)160. 如图1,延长OA交BC于点F, 图1 AOOE,AOE=90. BCOE,AOE=BFO=90, 在RtABF中,AB=30 cm, sinB= , AF=ABsinB=30sin 70300.94=28.20(cm).,AF-CD+AO=28.20-8+6.8=27.0(cm). 答:投影探头的端点

    39、D到桌面OE的距离为27.0 cm. (2)如图2,过点B作DC的垂线,交DC的延长线于点H. 图2 在RtBCH中,HC=28.2+6.8-6-8=21(cm). sinHBC= ,sinHBC= =0.6. sin 36.80.60,HBC36.8,ABC=70-36.8=33.2. 答:当投影探头的端点D到桌面OE的距离为6 cm时,ABC为33.2.,解后反思 解决此类解直角三角形问题的一般思路:将实际问题抽象成解直角三角形问题.弄清题目中各 量之间的关系,如果题目中有直角三角形,则根据边角的关系进行计算,若图中没有直角三角形,可通过添加 辅助线构造直角三角形来解决.,6.(2019河

    40、南,22,10分)在ABC中,CA=CB,ACB=.点P是平面内不与点A、C重合的任意一点,连接AP,将 线段AP绕点P逆时针旋转得到线段DP,连接AD,BD,CP. (1)观察猜想 如图1,当=60时, 的值是 ,直线BD与直线CP相交所成的较小角的度数是 . (2)类比探究 如图2,当=90时,请写出 的值及直线BD与直线CP相交所成的较小角的度数,并就图2的情形说明理由. (3)解决问题 当=90时,若点E、F分别是CA、CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时 的值.,解析 (1)1;60.(注:若填为60,不扣分)(2分) 如图,延长CP交BD的延长线于E,

    41、设AB交EC于点O. 由题意得PAD=CAB=60, CAP=BAD, CA=BA,PA=DA, CAPBAD(SAS), PC=BD,ACP=ABD, AOC=BOE,BEO=CAO=60, =1,直线BD与直线CP相交所成的较小角的度数是60. (2) ,直线BD与直线CP相交所成的较小角的度数为45. (注:若没写出,但后续证明正确,不扣分)(4分) 理由如下: ACB=90,CA=CB,CAB=45, = . 同理可得:PAD=45, = . = ,CAB=PAD. CAB+DAC=PAD+DAC,即DAB=PAC. DABPAC. (6分) = = ,DBA=PCA.,设BD交CP于

    42、点G,BD交CA于点H. BHA=CHG, CGH=BAH=45. (8分) (3) 的值为2+ 或2- . (10分) 提示:分两种情况.如图,可设CP=a,则BD= a.设CD与AB交于点Q,则PQ=CP=a.可证DQB=DBQ=67. 5,则DQ=BD= a,易得AD= PD=2a+ a,所以 =2+ . 如图,可设AP=DP=b,则AD= b.由EFAB,得PEA=CAB=45,可证ECD=EAD=22.5,CD=AD = b,CP= b+b,所以 =2- .,图 图,思路分析 (1)当=60时,可得ABC、APD为等边三角形,由旋转证得APCADB,可得结论;(2)当 =90时,在R

    43、tPAD,RtCAB中, = = ,DAB=PAC,可证DABPAC,可得结论;(3)以AC为直 径作圆交直线EF于点P,则点P即为所求作的点,分情况画出图形,可求出答案.,7.(2018福建,21,8分)如图,在RtABC中,C=90,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90得到,EFG由ABC沿CB方向平移得到,且直线EF过点D. (1)求BDF的大小; (2)求CG的长.,解析 (1)线段AD由线段AB绕点A按逆时针方向旋转90得到, DAB=90,AD=AB=10. ABD=45. EFG由ABC沿CB方向平移得到,ABEF, BDF=ABD=45. (2)由

    44、平移的性质可得AECG,ABEF,且AE=CG. DEA=DFC=ABC,ADE+DAB=180, DAB=90,ADE=90, ACB=90,ADE=ACB,ADEACB, = , AC=8,AB=AD=10,AE= ,CG=AE= .,解后反思 本题考查图形的平移与旋转、平行线的性质、等腰直角三角形的判定与性质、解直角三角 形、相似三角形的判定与性质等基础知识,考查运算能力、推理能力、数形结合思想、化归与转化思想.,8.(2016天津,24,10分)在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把ABO绕点B逆时针旋转,得A BO,点A,O旋转后的对应点为A,O.记旋转角为

    45、. (1)如图,若=90,求AA的长; (2)如图,若=120,求点O的坐标; (3)在(2)的条件下,边OA上的一点P旋转后的对应点为P,当OP+BP取得最小值时,求点P的坐标(直接写出 结果即可).,解析 (1)点A(4,0),点B(0,3), OA=4,OB=3. 在RtABO中,由勾股定理,得AB= =5. 根据题意,ABO是ABO绕点B逆时针旋转90得到的, 由旋转的性质,可得ABA=90,AB=AB=5. 在RtABA中,AA= =5 . (2)如图,根据题意,由旋转的性质,可得OBO=120,OB=OB=3,过点O作OCy轴,垂足为C,则OCB=90. 在RtOCB中,由OBC=180-OBO=60,得OC=OBsinOBC=OBsin 60= ,BC=OBcosOBC=O,Bcos 60= .有OC=OB+BC= . 点O的坐标为 . (3) .,9.(2016吉林,24,8分) (1)如图,在RtABC中,ABC=90,以点B为中心,把ABC逆时针旋转90,得到A1BC1;再以点C为中心, 把ABC顺时针旋转90,得到A2B1C.连接C1B1,则C1B1与BC的位置关系为 ; (2)如图,当ABC是锐角三角形,A

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020年安徽中考数学复习课件§6.1 图形的轴对称、平移与旋转.pptx
    链接地址:https://www.163wenku.com/p-353953.html
    小豆芽
         内容提供者      个人认证 实名认证
    相关资源 更多
  • 2025年湖南中考数学一轮复习考点研析 第二章 方程(组)与不等式(组)第7讲 分式方程及其应用.pptx2025年湖南中考数学一轮复习考点研析 第二章 方程(组)与不等式(组)第7讲 分式方程及其应用.pptx
  • 2025年湖南中考数学一轮复习考点研析 第二章 方程(组)与不等式(组)第8讲 一元一次不等式(组)及其应用.pptx2025年湖南中考数学一轮复习考点研析 第二章 方程(组)与不等式(组)第8讲 一元一次不等式(组)及其应用.pptx
  • 2025年湖南中考数学一轮复习考点研析 第一章 数与式第3讲 整式与因式分解.pptx2025年湖南中考数学一轮复习考点研析 第一章 数与式第3讲 整式与因式分解.pptx
  • 2025年湖南中考数学一轮复习考点研析 第二章 方程(组)与不等式(组)第6讲 一元二次方程及其应用.pptx2025年湖南中考数学一轮复习考点研析 第二章 方程(组)与不等式(组)第6讲 一元二次方程及其应用.pptx
  • 2025年湖南中考数学一轮复习考点研析 第一章 数与式第2讲 数的开方与二次根式.pptx2025年湖南中考数学一轮复习考点研析 第一章 数与式第2讲 数的开方与二次根式.pptx
  • 2025年湖南中考数学一轮复习考点研析 第一章 数与式第1讲 实数及其运算.pptx2025年湖南中考数学一轮复习考点研析 第一章 数与式第1讲 实数及其运算.pptx
  • 2025年湖南中考数学一轮复习考点研析 第一章 数与式第4讲 分式.pptx2025年湖南中考数学一轮复习考点研析 第一章 数与式第4讲 分式.pptx
  • 2025年湖南中考数学一轮复习考点研析 第二章 方程(组)与不等式(组)第5讲 一次方程(组)及其应用.pptx2025年湖南中考数学一轮复习考点研析 第二章 方程(组)与不等式(组)第5讲 一次方程(组)及其应用.pptx
  • 2025年四川省中考数学 培育新素养 专题考法精研-专题1 规律探究问题.pptx2025年四川省中考数学 培育新素养 专题考法精研-专题1 规律探究问题.pptx
  • 2025年四川省中考数学 培育新素养 专题考法精研-专题6 反比例函数的综合问题.pptx2025年四川省中考数学 培育新素养 专题考法精研-专题6 反比例函数的综合问题.pptx
  • 2025年四川省中考数学 培育新素养 专题考法精研-专题3 方案设计、选取及最优问题.pptx2025年四川省中考数学 培育新素养 专题考法精研-专题3 方案设计、选取及最优问题.pptx
  • 2025年四川省中考数学 培育新素养 专题考法精研-专题2 新定义阅读问题.pptx2025年四川省中考数学 培育新素养 专题考法精研-专题2 新定义阅读问题.pptx
  • 2025年四川省中考数学 培育新素养 专题考法精研-专题7 二次函数与几何综合问题.pptx2025年四川省中考数学 培育新素养 专题考法精研-专题7 二次函数与几何综合问题.pptx
  • 2025年四川省中考数学 培育新素养 专题考法精研-专题5 几何图形的动态问题.pptx2025年四川省中考数学 培育新素养 专题考法精研-专题5 几何图形的动态问题.pptx
  • Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库