2020年安徽中考数学复习课件§3.2 一次函数.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年安徽中考数学复习课件§3.2 一次函数.pptx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 课件 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、1.(2016安徽,20,10分)如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3), 与y轴的负半轴交于点B,且OA=OB. (1)求函数y=kx+b和y= 的表达式; (2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC.求此时点M的坐标.,A组 安徽中考题组,解析 (1)将A(4,3)代入y= ,得3= ,则a=12. (2分) OA= =5. 由于OA=OB且B在y轴负半轴上,所以B(0,-5), 将A(4,3)、B(0,-5)代入y=kx+b,得 解得 故所求函数表达式分别为y=2x-5和 y= . (6分) (2)因为MB=
2、MC,所以点M在线段BC的中垂线上,即x轴上.又因为点M在一次函数的图象上,所以M为一次函 数图象与x轴的交点.令2x-5=0,解得x= . 所以点M的坐标为 . (10分),2.(2014安徽,20,10分)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支 付餐厨和建筑垃圾处理费5 200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处 理费30元/吨,若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8 800 元. (1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨? (2)该企业计划
3、2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的 3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?,解析 (1)设2013年该企业处理的餐厨垃圾为x吨,建筑垃圾为y吨,根据题意,得 (3分) 解得 答:2013年该企业处理的餐厨垃圾为80吨,建筑垃圾为200吨.(5分) (2)设2014年该企业处理的餐厨垃圾为m吨,建筑垃圾为n吨,需要支付的这两种垃圾处理费是z元. 根据题意,得m+n=240且n3m,解得m60. z=100m+30n=100m+30(240-m)=70m+7 200. (7分) 由于z的值随m的增大而增大,所以当m=60时
4、,z最小, 最小值为7060+7 200=11 400. 答:2014年该企业最少需要支付这两种垃圾处理费共11 400元.(10分),思路分析 (1)设2013年处理的餐厨垃圾为x吨,建筑垃圾为y吨,然后根据垃圾处理费列出关于x,y的二元一 次方程组,解出x,y即可;(2)设2014年处理的餐厨垃圾为m吨,建筑垃圾为n吨,处理费为z元,然后由题意可得m +n=240且n3m,而处理费z=100m+30n=70m+7 200,由一次函数的性质可求出z的最小值.,考点一 一次函数(正比例函数)的图象与性质,B组 20152019年全国中考题组,1.(2018辽宁沈阳,8,2分)在平面直角坐标系中
5、,一次函数y=kx+b的图象如图所示,则k和b的取值范围是 ( ) A.k0,b0 B.k0,b0 D.k0,b0,答案 C 由题图得,y随x的增大而减小,所以k0.,2.(2017上海,3,4分)如果一次函数y=kx+b(k、b是常数,k0)的图象经过第一、二、四象限,那么k、b应满足 的条件是 ( ) A.k0,且b0 B.k0 C.k0,且b0 D.k0,且b0,答案 B 因为一次函数的图象经过第一、二、四象限,所以直线左高右低,且与y轴的交点在y轴的正半轴 上,所以k0,故选B.,3.(2018陕西,4,3分)如图,在矩形AOBC中,A(-2,0),B(0,1).若正比例函数y=kx的
6、图象经过点C,则k的值为 ( ) A.-2 B.- C.2 D.,答案 B 四边形AOBC是矩形,A(-2,0),B(0,1), AC=OB=1,BC=OA=2,点C的坐标为(-2,1), 将点C(-2,1)代入y=kx,得1=-2k,解得k=- ,故选B.,4.(2016河北,5,3分)若k0,b0,则y=kx+b的图象可能是 ( ),答案 B 选项A中,k0,b=0,选项C中,k0,选项D中,k=0,b0,只有选项B符合题意.,5.(2017辽宁沈阳,9,2分)在平面直角坐标系中,一次函数y=x-1的图象是 ( ),答案 B 当x=0时,y=-1;当y=0时,x=1,所以直线y=x-1经过
7、点(0,-1)、(1,0),观察各选项中的图象可知B正确, 故选B.,6.(2018贵州贵阳,9,3分)一次函数y=kx-1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为 ( ) A.(-5,3) B.(1,-3) C.(2,2) D.(5,-1),答案 C 由于y的值随x值的增大而增大,因此k0.把(-5,3)代入函数解析式得,k=- 0,所以选项C 符合题意;把(5,-1)代入函数解析式得,k=0,所以选项D不符合题意.故选C.,7.(2019四川成都,13,4分)已知一次函数y=(k-3)x+1的图象经过第一、二、四象限,则k的取值范围是 .,答案 k3,解析 由题意得k
8、-30,所以k3.,8.(2016江西,15,6分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下 方,已知AB= . (1)求点B的坐标; (2)若ABC的面积为4,求直线l2的解析式.,解析 (1)点A的坐标为(2,0),AO=2. 在RtAOB中,22+OB2=( )2,OB=3, 点B在原点上方,B(0,3). (2分) (2)SABC= BCOA,即4= BC2, BC=4,OC=BC-OB=4-3=1, 点C在原点下方, C(0,-1). (4分) 设直线l2的解析式为y=kx+b(k0). 直线l2经过点A(2,0),C(0,-1
9、), 解得 直线l2的解析式为y= x-1. (6分),考点二 一次函数(正比例函数)的应用问题,1.(2016黑龙江哈尔滨,10,3分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时 间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示. 则该绿化组提高工作效率前每小时完成的绿化面积是( ) A.300 m2 B.150 m2 C.330 m2 D.450 m2,答案 B 设提高效率后S与t的函数解析式为S=kt+b(k0),t2,把(4,1 200)、(5,1 650)代入得 解得 所以提高效率后的函数解析式为S=
10、450t-600(t2). 把t=2代入解析式S=450t-600,得S=300, 则绿化组提高工作效率前每小时完成的绿化面积为3002=150 m2,故选B.,2.(2015江苏连云港,8,3分)如图是本地区一种产品30天的销售图象,图是产品日销售量y(单位:件)与时间 t (单位:天)的函数关系,图是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系.已知日销售利润 =日销售量一件产品的销售利润.下列结论错误的是( ) A.第24天的销售量为200件,B.第10天销售一件产品的利润是15元 C.第12天与第30天这两天的日销售利润相等 D.第30天的日销售利润是750元,答案
11、C 由函数图象获得相关数据,两幅图的横轴表示的都是时间t,由题图中横坐标为24的点的纵坐 标是200,即可判断A中结论正确.由题图中横坐标为30的点的纵坐标是150与题图中横坐标为30的点的 纵坐标是5,得第30天的日销售利润为1505=750(元),选项D中结论正确.求出y与t之间的函数关系式为y= 求出z与t之间的函数关系式为z= 当t=10时,z=15,选项B中结论正确.当t =12时,y=150,z=13,yz=1 950;当t=30时,y=150,z=5,yz=750,1 950750,选项C中结论不正确,故选C.,评析 本题对计算要求较高,在判断选项B与C时需要求出相关函数关系式,
12、在选择题中属于较难题.,3.(2019黑龙江齐齐哈尔,22,10分)甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公 路从甲、乙两地以各自的速度匀速相向而行.货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货 车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉 头时间不计),最后两车同时到达甲地.已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关 系如图所示,请结合图象解答下列问题: (1)货车的速度是 千米/小时;轿车的速度是 千米/小时;t值为 ;,(2)求轿车距其出发地的距离y(千米)与所用时间x(小时
13、)之间的函数关系式,并写出自变量x的取值范围; (3)请直接写出货车出发多长时间两车相距90千米.,解析 (1)由题图知,当x=0时,货车距乙地50 km. 又货车比轿车早出发1小时, 货车速度为50 km/h. 甲、乙两地相距400 km, 货车需要 =8小时到达. 则轿车行驶时间为8-1-1=6小时. t= =3, 轿车速度为 =80 km/h. 故答案为50,80,3. (3分) (2)由题意可得A(3,240),B(4,240),C(7,0), 设直线OA的解析式为y=k1x(k10), 将A点坐标代入可得k1=80,y=80x(0x3), (5分),当3x4时,y=240. (6分)
14、 设直线BC的解析式为y=kx+b(k0), 将(4,240)和(7,0)代入可得 y=-80x+560(4x7), (7分) y= (8分) (3)3小时或5小时. (10分) 详解:当货车与轿车相遇前相距90 km时,可得线段图如图,80x+90+50x+50=400, 解得x=2. 此时货车出发3小时. 当货车与轿车相遇后相距90 km时,可得线段图如图. 560-80x+50x+50=400+90, 解得x=4. 此时货车出发5小时. 综上所述,货车出发3小时或5小时两车相距90 km.,4.(2018河北,24,10分)如图,直角坐标系xOy中,一次函数y=- x+5的图象l1分别与
15、x,y轴交于A,B两点,正比例函 数的图象l2与l1交于点C(m,4). (1)求m的值及l2的解析式; (2)求SAOC-SBOC的值; (3)一次函数y=kx+1的图象为l3,且l1,l2,l3不能围成三角形,直接写出k的值.,解析 (1)C(m,4)在直线y=- x+5上, 4=- m+5,得m=2. 设l2的解析式为y=k1x(k10), C(2,4)在l2上, 4=2k1,k1=2. l2的解析式为y=2x. (2)把y=0代入y=- x+5,得x=10,OA=10. 把x=0代入y=- x+5,得y=5,OB=5, SAOC= 104=20,SBOC= 52=5, SAOC-SBO
16、C=20-5=15. (3)- ,2, .,详解:一次函数y=kx+1的图象l3经过点(0,1),且l1,l2,l3不能围成三角形, 当l3经过点C(2,4)时,l1,l2,l3不能围成三角形,2k+1=4,解得k= ; 当l2,l3平行时,l1,l2,l3不能围成三角形,此时k=2; 当l1,l3平行时,l1,l2,l3不能围成三角形,此时k=- .,思路分析 (1)先求得点C的坐标,再运用待定系数法求出l2的解析式;(2)先求出A,B的坐标,再根据点C的坐 标分别求出SAOC和SBOC,进而得出SAOC-SBOC的值;(3)一次函数y=kx+1的图象经过点(0,1),l1,l2,l3不能围
17、成三角 形分三种情况:l3经过点C(2,4),l2,l3平行,l1,l3平行.,易错警示 易忽略l3经过点C(2,4)时,l1,l2,l3不能围成三角形而致错.,5.(2017上海,22,10分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案. 甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示. 乙公司方案:绿化面积不超过1 000平方米时,每月收取费用5 500元;绿化面积超过1 000平方米时,每月在收 取5 500元的基础上,超过部分每平方米收取4元. (1)求如图所示的y与x的函数解析式;(不要求写出定义域) (2)如果某学校目前的绿化面积是
18、1 200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用 较少.,解析 (1)设y=kx+b(k0). 将(100,900),(0,400)代入上式, 得 所求函数的解析式为y=5x+400. (2)如果选择甲公司,费用为51 200+400=6 400(元), 如果选择乙公司,费用为5 500+4(1 200-1 000)=6 300(元), 应选择乙公司,每月的绿化养护费用较少.,6.(2017天津,23,10分)用A4纸复印文件.在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同 样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时
19、,超过部分每页收费0.09元. 设在同一家复印店一次复印文件的页数为x(x为非负整数). (1)根据题意,填写下表;,(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式; (3)当x70时,顾客在哪家复印店复印花费少?请说明理由.,解析 (1)从左到右,从上到下依次填入:1;3;1.2;3.3. (2)y1=0.1x(x0). 当0x20时,y2=0.12x, 当x20时,y2=0.1220+0.09(x-20),即y2=0.09x+0.6. (3)顾客在乙复印店复印花费少. 当x70时,有y1=0.1x,y2=0.09x+0.6. y1-y2=0
20、.1x-(0.09x+0.6)=0.01x-0.6. 记y=0.01x-0.6. 0.010,y随x的增大而增大. 又x=70时,y=0.1, x70时,y0.1,即y0, y1y2, 当x70时,顾客在乙复印店复印花费少.,思路分析 (1)根据两店收费标准,求得结果即可. (2)根据每页收费0.1元即可求得y1=0.1x(x0);当一次复印页数不超过20时,根据收费等于每页收费乘页数 即可求得y2=0.12x,当一次复印页数超过20时,根据题意求得y2=0.1220+0.09(x-20)=0.09x+0.6. (3)令y=y1-y2,得到y与x(x70)之间的函数关系式,根据一次函数的增减性
21、进行判断即可.,评析 本题考查了一次函数的应用,读懂题目信息,列出函数关系式是解题的关键.,7.(2018四川成都,26,8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场 调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方 米100元. (1)直接写出当0x300和x300时,y与x的函数关系式; (2)广场上甲、乙两种花卉的种植面积共1 200 m2,若甲种花卉的种植面积不少于200 m2,且不超过乙种花卉,种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少 元?,
22、解析 (1)当0x300时,y=130x; 当x300时,y=80x+15 000. (2)甲种花卉的种植面积为x m2,则乙种花卉的种植面积为(1 200-x)m2, 200x800. 设甲、乙两种花卉的种植总费用为w元. 当200x300时,w=130x+100(1 200-x)=30x+120 000. 当x=200时,wmin=126 000; 当300x800时,w=80x+15 000+100(1 200-x)=135 000-20x. 当x=800时,wmin=119 000. 119 000126 000, 当x=800时,总费用最少,最少为119 000元. 此时乙种花卉的种
23、植面积为1 200-800=400 m2.,答:应分配甲种花卉的种植面积为800 m2,乙种花卉的种植面积为400 m2,才能使种植总费用最少,最少总费 用为119 000元.,思路分析 (1)由题图可知y关于x的函数是分段函数,用待定系数法求解析式即可.(2)甲种花卉的种植面积 为 x m2,则乙种花卉的种植面积为(1 200-x)m2,根据条件列不等式组可确定x的范围,分类讨论得出最少费用.,解后反思 本题考查了根据函数图象求函数解析式,用一次函数和一元一次不等式解实际问题,应根据题 意分类讨论求解.,考点一 一次函数(正比例函数)的图象与性质,C组 教师专用题组,1.(2017陕西,3,
24、3分)若一个正比例函数的图象经过A(3,-6),B(m,-4)两点,则m的值为 ( ) A.2 B.8 C.-2 D.-8,答案 A 设这个正比例函数的解析式为y=kx(k0),将点A(3,-6)代入,可得k=-2,故y=-2x,再将点B(m,-4)代入 y=-2x,可得m=2.故选A.,2.(2016广西南宁,4,3分)已知正比例函数y=3x的图象经过点(1,m),则m的值为 ( ) A. B.3 C.- D.-3,答案 B 将x=1,y=m代入y=3x,得m=31=3.故选B.,3.(2015陕西,5,3分)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=
展开阅读全文