时间序列分析与预测二讲时间序列模型课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《时间序列分析与预测二讲时间序列模型课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 时间 序列 分析 预测 模型 课件
- 资源描述:
-
1、时间序列分析与预测时间序列分析与预测第二讲:时间序列模型第二讲:时间序列模型大连理工大学经济系大连理工大学经济系原毅军原毅军教学大纲教学大纲 上节课知识要点复习上节课知识要点复习 时间序列的基本特征时间序列的基本特征 时间序列建摸的两种基本假设时间序列建摸的两种基本假设 确定性时间序列模型确定性时间序列模型 随机性时间序列模型随机性时间序列模型上节课知识要点复习上节课知识要点复习时间序列时间序列 同一现象在不同时间上的相继观察值排列而成的同一现象在不同时间上的相继观察值排列而成的数列数列 形式上由现象所属的时间和现象在不同时间上的形式上由现象所属的时间和现象在不同时间上的观察值两部分组成观察值
2、两部分组成 排列的时间可以是年份、季度、月份或其他任何排列的时间可以是年份、季度、月份或其他任何时间形式时间形式国内生产总值等时间序列国内生产总值等时间序列年年 份份国内生产总值国内生产总值(亿元亿元)年末总人口年末总人口(万人万人)人口自然增长率人口自然增长率()()居民消费水平居民消费水平(元元)19901991199219931994201920192019201918547.921617.826638.134634.446759.458478.167884.674772.479552.811433311582311717111851711985012112112238912362612
3、4810 14.3912.9811.6011.4511.2110.5510.4210.069.538038961070133117812311272629443094时间序列的分类时间序列的分类时间序列时间序列平均数序列平均数序列绝对数序列绝对数序列相对数序列相对数序列时期序列时期序列时点序列时点序列时间序列的编制原则时间序列的编制原则 时间长短要一致时间长短要一致 总体范围要一致总体范围要一致 指标内容要一致指标内容要一致 计算方法和口径要一致计算方法和口径要一致时间序列的水平分析时间序列的水平分析发展水平发展水平平均发展水平平均发展水平增长量增长量平均增长量平均增长量发展水平与平均发展水平
4、发展水平与平均发展水平 发展水平发展水平 现象在不同时间上的观察值现象在不同时间上的观察值 说明现象在某一时间上所达到的水平说明现象在某一时间上所达到的水平 平均发展水平平均发展水平 现象在不同时间上取值的平均数,又称序时平均数现象在不同时间上取值的平均数,又称序时平均数 说明说明现象在一段时期内所达到的一般水平现象在一段时期内所达到的一般水平 不同类型的时间序列有不同的计算方法不同类型的时间序列有不同的计算方法绝对数序列的序时平均数绝对数序列的序时平均数 判断所要计算的绝对数序列的类型判断所要计算的绝对数序列的类型 根据不同序列的类型选择不同的计算方法根据不同序列的类型选择不同的计算方法绝对
5、数序列绝对数序列时期序列时期序列时点序列时点序列连续时点序列连续时点序列间隔不等的时点序列间隔不等的时点序列间隔相等的时点序列间隔相等的时点序列绝对数序列的序时平均数绝对数序列的序时平均数计算公式:计算公式:nYnYYYYniin121绝对数序列的序时平均数绝对数序列的序时平均数 间隔不等的时点序列间隔不等的时点序列绝对数序列的序时平均数绝对数序列的序时平均数1111232121222niinnnffYYfYYfYYY22211322211nnnYYYYYYYYY绝对数序列的序时平均数绝对数序列的序时平均数 当当间隔相等间隔相等(f(f1 1=f=f2 2=f=fn-1n-1)时,有时,有12
6、2121nYYYYYnn时间间隔不等的时点序列的序时平均数计算实例时间间隔不等的时点序列的序时平均数计算实例 设某种股票设某种股票20192019年各统计时点的收盘价如下表,计算该股年各统计时点的收盘价如下表,计算该股票票20192019年的年平均价格年的年平均价格某种股票某种股票2004年各统计时点的收盘价年各统计时点的收盘价统计时点统计时点1月月1日日3月月1日日7月月1日日10月月1日日12月月31日日收盘价收盘价(元元)15.214.217.616.315.8(元)0.163342328.153.16323.166.17426.172.14222.142.15Y增长量增长量报告期水平与
7、基期水平之差,说明现象在观察期内增长的绝对数量报告期水平与基期水平之差,说明现象在观察期内增长的绝对数量分为逐期增长量与累积增长量分为逐期增长量与累积增长量 逐期增长量逐期增长量 报告期水平与前一期水平之差报告期水平与前一期水平之差 计算公式为:计算公式为:YYt t=Y=Yt t-Y-Yt-1t-1 (t=1,2,n)(t=1,2,n)累积增长量累积增长量 报告期水平与某一固定时期水平之差报告期水平与某一固定时期水平之差 计算公式为:计算公式为:YYt t=Y=Yt t-Y-Y0 0 (t=1,2,n)(t=1,2,n)各逐期增长量之和等于最末期的累积增长量各逐期增长量之和等于最末期的累积增
8、长量 平均增长量平均增长量 观察期内各逐期增长量的平均数观察期内各逐期增长量的平均数 描述现象在观察期内平均增长的数量描述现象在观察期内平均增长的数量 计算公式为计算公式为1观察值个数累积增长量逐期增长量个数逐期增长量之和平均增长量时间序列的速度分析发展速度平均发展速度增长速度平均增长速度发展速度发展速度 报告期水平与基期水平之比报告期水平与基期水平之比 说明现象在观察期内相对的发展变化程度说明现象在观察期内相对的发展变化程度 有环比发展速度与定期发展速度之分有环比发展速度与定期发展速度之分环比发展速度与定基发展速度环比发展速度与定基发展速度 环比发展速度环比发展速度 报告期水平与前一期水平之
9、比报告期水平与前一期水平之比),2,1(1ntYYRttt),2,1(0ntYYRtt定基发展速度定基发展速度报告期水平与某一固定时期水平之比报告期水平与某一固定时期水平之比环比发展速度与定基发展速度的关系环比发展速度与定基发展速度的关系 观察期内各环比发展速度的连乘积等于最末期的定基发展观察期内各环比发展速度的连乘积等于最末期的定基发展速度速度 两个相邻的定基发展速度,用后者除以前者,等于相应的两个相邻的定基发展速度,用后者除以前者,等于相应的环比发展速度环比发展速度10tntYYYY1010ttttYYYYYY增长速度增长速度 增长量与基期水平之比,增长量与基期水平之比,又称增长率又称增长
10、率 说明现象的相对增长程度说明现象的相对增长程度 有环比增长速度与定基增长速度之分有环比增长速度与定基增长速度之分 计算公式为计算公式为1发展速度基期水平基期水平报告期水平基期水平增长量增长速度环比增长速度与定基增长速度环比增长速度与定基增长速度 环比增长速度环比增长速度 报告期水平与前一时期水平之比报告期水平与前一时期水平之比),2,1(1111ntYYYYYGtttttt0001(1,2,)tttYYYGtnYY 定基增长速度定基增长速度 报告期水平与某一固定时期水平之比报告期水平与某一固定时期水平之比平均发展速度平均发展速度 观察期内各环比发展速度的平均数观察期内各环比发展速度的平均数
11、说明现象在整个观察期内平均发展变化的程度说明现象在整个观察期内平均发展变化的程度 通常采用几何法通常采用几何法(水平法水平法)计算计算 计算公式为:计算公式为:),2,1(0111201ntYYYYYYYYYYRnnnttnnn速度指标的分析与应用速度指标的分析与应用 当时间序列中的观察值出现当时间序列中的观察值出现0 0或负数时,不宜计算速度或负数时,不宜计算速度 例如:假定某企业连续五年的利润额分别为例如:假定某企业连续五年的利润额分别为5 5、2 2、0 0、-3-3、2 2万元,万元,对这一序列计算速度,在这种情况下,适宜直接用绝对数指标进对这一序列计算速度,在这种情况下,适宜直接用绝
12、对数指标进行分析行分析 在有些情况下,不能单纯就速度论速度,要注意速度与水在有些情况下,不能单纯就速度论速度,要注意速度与水平指标的结合分析平指标的结合分析时间序列的基本特征时间序列的基本特征例:时间序列分析例:时间序列分析先把时间序列描绘在坐标图上,坐标的横轴表示时间先把时间序列描绘在坐标图上,坐标的横轴表示时间 t t,坐标的,坐标的纵轴表示所分析的经济变量纵轴表示所分析的经济变量 下图描述了某商店某年前下图描述了某商店某年前1010个月的销售额个月的销售额DateSEP 2002JAN 2002MAY 2001SEP 2000JAN 2000MAY 1999SEP 1998JAN 199
13、8MAY 1997SEP 1996JAN 1996MAY 1995SEP 1994JAN 1994MAY 1993SEP 1992JAN 1992MAY 1991SEP 1990JAN 1990SALES12010080604020某企业从某企业从19901990年年1 1月到月到20192019年年1212月的销售数据月的销售数据(单位:百万元)(单位:百万元)DateSEP 2 0 0 2JAN 2 0 0 2M AY 2 0 0 1SEP 2 0 0 0JAN 2 0 0 0M AY 1 9 9 9SEP 1 9 9 8JAN 1 9 9 8M AY 1 9 9 7SEP 1 9 9 6
14、JAN 1 9 9 6M AY 1 9 9 5SEP 1 9 9 4JAN 1 9 9 4M AY 1 9 9 3SEP 1 9 9 2JAN 1 9 9 2M AY 1 9 9 1SEP 1 9 9 0JAN 1 9 9 0SALES1 2 01 0 08 06 04 02 0从这个点图可以看出。总的趋势是增长的,但增长并不是单调上升的;从这个点图可以看出。总的趋势是增长的,但增长并不是单调上升的;有涨有落。但这种升降不是杂乱无章的,和季节或月份的周期有关系。有涨有落。但这种升降不是杂乱无章的,和季节或月份的周期有关系。除了增长的趋势和季节影响之外,还有些无规律的随机因素的作用。除了增长的趋
15、势和季节影响之外,还有些无规律的随机因素的作用。时间序列分析时间序列分析 分析时间序列变化的影响因素分析时间序列变化的影响因素 每一个经济变量的变化,在不同时期受不同因素影每一个经济变量的变化,在不同时期受不同因素影响,经济变量的时间序列综合地反映了各种因素的响,经济变量的时间序列综合地反映了各种因素的影响影响 影响时间序列变化的主要因素分类影响时间序列变化的主要因素分类 长期趋势因素长期趋势因素 季节变化因素季节变化因素 周期变化因素周期变化因素 不规则变化因素不规则变化因素时间序列的分解时间序列的分解 经济变量的时间序列通常可以分解成四部分,即:经济变量的时间序列通常可以分解成四部分,即:
16、长期趋势,用长期趋势,用 T T(TrendTrend)表示)表示 季节波动,用季节波动,用 S S(SeasonalSeasonal)表示)表示 循环波动,用循环波动,用 C C(CyclicalCyclical)表示)表示 不规则波动,用不规则波动,用 I I(IrregularIrregular)表示表示 这四种因素对时间序列变化的影响有二中基本假设这四种因素对时间序列变化的影响有二中基本假设 乘积形式:乘积形式:Y=TY=TS S C C I I 和的形式:和的形式:Y=T+S+C+IY=T+S+C+IttYYY=T+S+C+IY=TS C I时间序列分解法时间序列分解法 基于乘积模型
17、的时间序列分解基于乘积模型的时间序列分解Y Yt t=T=TS SC CI I 第一步:消除时间序列中的季节因素和不规则因素第一步:消除时间序列中的季节因素和不规则因素 采用移动平均法采用移动平均法 计算移动平均值的时期等于季节波动的周期长度计算移动平均值的时期等于季节波动的周期长度 用移动平均法计算的结果是只包含长期趋势因素用移动平均法计算的结果是只包含长期趋势因素T T和循环波动因素和循环波动因素C C的时间序列,即:的时间序列,即:M Mt t=T=TC C 第二步:计算只反映季节波动的季节指数第二步:计算只反映季节波动的季节指数(Seasonal Seasonal indicesind
18、ices)用移动平均值去除原时间序列中对应时期的实际值,得到只用移动平均值去除原时间序列中对应时期的实际值,得到只包含季节波动和不规则波动的时间序列,即:包含季节波动和不规则波动的时间序列,即:S SI I 通常是围绕通常是围绕1 1随机波动的值,某个时期的值大于随机波动的值,某个时期的值大于1 1,则该,则该时期的季节波动大于平均水平时期的季节波动大于平均水平 季节指数是通过对时间序列季节指数是通过对时间序列 S SI I 计算平均值得到的,即:计算平均值得到的,即:ISCTICSTMYtt_ISS 第三步:把长期趋势因素与循环因素分开第三步:把长期趋势因素与循环因素分开 识别长期趋势变动的
19、类型,建立相应的确定性时间序列模型识别长期趋势变动的类型,建立相应的确定性时间序列模型 例如,时间序列的长期趋势可以用下列模型表示例如,时间序列的长期趋势可以用下列模型表示Y Yt t=b=b0 0+b+b1 1t+t+t t 用最小二乘法估计出模型中参数用最小二乘法估计出模型中参数b b0 0 和和 b b1 1,则长期趋势值可以,则长期趋势值可以用下式计算:用下式计算:反映循环因素波动的循环指数可以用下式计算反映循环因素波动的循环指数可以用下式计算tbbTt10TMTCTCt时间序列的基本特征时间序列的基本特征 时间序列变化的基本特征是指各种时间序列表现出的具有时间序列变化的基本特征是指各
20、种时间序列表现出的具有共性的变化规律,如趋势变化、周期性变化等共性的变化规律,如趋势变化、周期性变化等 根据时间序列变化的基本特征,它们可以分为:根据时间序列变化的基本特征,它们可以分为:呈水平形变化的时间序列呈水平形变化的时间序列 呈趋势变化的时间序列呈趋势变化的时间序列 呈周期变化的时间序列呈周期变化的时间序列 具有冲动点的时间序列具有冲动点的时间序列 具有转折变化的时间序列具有转折变化的时间序列 呈阶梯形变化的时间序列呈阶梯形变化的时间序列呈水平型变化的时间序列呈水平型变化的时间序列经济变量的发展变化比较平稳,没有明显的上升或下降趋势,也经济变量的发展变化比较平稳,没有明显的上升或下降趋
21、势,也没有较大幅度的上下波动没有较大幅度的上下波动如处于市场饱和状态的产品销售量,生产过程中出现的稳定的次如处于市场饱和状态的产品销售量,生产过程中出现的稳定的次品率。品率。Ytt呈趋势变化的时间序列呈趋势变化的时间序列上升或下降的趋势变化,长期趋势变化上升或下降的趋势变化,长期趋势变化Ytt呈周期型变化的时间序列呈周期型变化的时间序列Ytt具有冲动点(具有冲动点(ImpulseImpulse)变化的时间序列)变化的时间序列Ytt具有阶梯型变化的时间序列具有阶梯型变化的时间序列Ytt时间序列的转折性变化时间序列的转折性变化Ytt时间序列建摸的两种基本假设时间序列建摸的两种基本假设时间序列建摸的
22、两种基本假设时间序列建摸的两种基本假设 确定性时间序列模型假设:时间序列是由一个确定性过程确定性时间序列模型假设:时间序列是由一个确定性过程产生的,这个确定性过程往往可以用时间产生的,这个确定性过程往往可以用时间 t t 的函数的函数f f(t t)来表示,时间序列中的每一个观测值是由这个确定性过程来表示,时间序列中的每一个观测值是由这个确定性过程和随机因素决定的和随机因素决定的 随机性时间序列模型假设:经济变量的变化过程是一个随随机性时间序列模型假设:经济变量的变化过程是一个随机过程,时间序列是由该随机过程产生的一个样本。因此,机过程,时间序列是由该随机过程产生的一个样本。因此,时间序列具有
展开阅读全文