书签 分享 收藏 举报 版权申诉 / 20
上传文档赚钱

类型最新-第3章-可靠性中常用的概率分布-PPT课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:3533469
  • 上传时间:2022-09-13
  • 格式:PPT
  • 页数:20
  • 大小:368.51KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《最新-第3章-可靠性中常用的概率分布-PPT课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    最新 可靠性 常用 概率 分布 PPT 课件
    资源描述:

    1、第第3 3章章 可靠性中常用的概率分布可靠性中常用的概率分布 o 可靠性设计的数学基础是概率论与数理统计。o 产品失效是随机事件。o 载荷、强度等设计变量为随机变量。o 系统与零件之间的关系要在概率框架下考虑。o 随机变量样本数据统计处理、分布拟合、参数估计、概率计算、置信度确定、等等。3.1 3.1 分布特征分布特征o随机变量分为离散型和连续型两类:n 离散型随机变量的取值xi是可数的。n 连续型随机变量x在其定义域内取任意值。o概率密度函数必须满足:n 对于所有x的值,n 对于连续型分布,n 对离散型的分布,o积累分布函数是随机变量X小于某个具体值的概率:P(Xx)。连续型随机变量的积累分

    2、布函数定义为:(3-1)0)(xf 1)(dxxf1)(nnxpxdfxF)()(o概率论中有多种分布函数。不同的分布函数是在不同背景下提出来的,适用于不同的场合。o对于可靠性问题,涉及的都是小概率问题。因此,更关心分布函数在其定义域中对应于小概率密度部分的细节特征。o“总体上相近”、或低阶数字特征(例如均值和标准差)相同的两种分布,在小概率问题中可能表现出很大的差别。例如,对于图(下左)中所示的两种分布形式(一种为Weibull分布,另一种为正态分布),虽然它们的概率密度函数曲线差别很小,但其累积分布函数(反映可靠性特征)在小概率区域的差别却十分显著,如图(下右)所示。3.23.2二项分布二

    3、项分布o试验 E 只有两种可能的结果 A 和,P(A)=p,P()=q。用 X 表示在 n 重独立试验中事件 A 发生的次数,则 X 是一个随机变量,它的可能取值为 0,1,2,k,n,在这种情形 X 服从的概率分布称为二项分布,记为:XB(n,p),其概率分布为:(3-2)o二项分布的数字特征:E(X)=np,D(X)=np(1-p)。o二项分布用途很广泛产品的质量检验、描述表决系统的可靠性。),.,2,1,0()1(nkppCkXPknkkn3.33.3泊松泊松(Poisson)(Poisson)分布分布o泊松分布:(3-3)o泊松分布的数字特征为:E(X)=,D(X)=。!kekXPk)

    4、,.,2,1,0()1(nkppCkXPknkkn泊松过程泊松过程泊松随机过程作为一种重要的计数过程,可以很好地用于描述“顾客流”、“粒子流”、“信号流”等事件的概率特性。o设为一计数过程,且满足以下条件:o(1)N(0)=0;o(2)是一个独立增量过程,即任取 时,N(t1),相互独立;o(3)对于充分小的 ,有0),(ttN0),(ttNmttt210)()(12tNtN)()(1mmtNtN0t)(2)()()()(1)()(totNttNPtotttNttNPo满足上述条件的计数过程 是参数为 的非时齐泊松随机过程,且 有:o当 时,有 0),(ttN0,0)(tt,0,tw,0mww

    5、tdttdttmwwtemdttdttmwNtwNP 0 0 )()(0 0 !)()()()(0wtdttmtemdttmNtNP 0 )(0 !)()0()(o当 为常数时,满足上述条件的计数过程 为时齐泊松随机过程。o泊松随机过程的概率密度分布泊松随机过程的概率密度分布 )(t0),(ttN1h 5.0)(t3.43.4指数分布指数分布o指数分布的定义o指数分布的密度函数为 (3-4)o式中为常数,是指数分布的失效率。o指数分布的累积分布函数F(x)=1-e-x (3-5)若产品在一定时间区间内的失效数服从泊松分布,则该产品的寿命服从指数分布。(0;0)()(0)0 xxef xx3.5

    6、 3.5 正态分布正态分布o 正态分布密度函数定义为:(3-6)o 其中:均值,标准差。xxxf,21exp21)(2标准正态分布o0,21的正态分布称为标准正态分布,其概率密度函数为:(3-7)o通过以下公式,可以实现从一般正态分布向标准正态分布的转换:)(21)(2/2xexfxxz可靠度函数 失效率函数截尾正态分布o工程实际中有很多试验或观察数据近似服从正态分布。但正态分布的取值范围(-到+)不很符合实际情况。考虑到许多试验或观察数据无负值,因此用截尾正态分布来表示较为准确。截尾正态分布定义为:o若X是一个非负的随机变量,且密度函数为则称X服从截尾正态分布。式中为“正规化常数”,以保证)

    7、0()(21exp21)(2xxxfodxxf1)(。3.6 3.6 对数正态分布对数正态分布o若 X 是一个随机变量,Yln(X)服从正态分布:Y=ln(X)N(,2)o则称 X 服从对数正态分布。o对数正态概率密度函数是:f(x)=(3-9)o 和 不是对数正态分布的均值和标准差,而分别称为它的对数均值和对数标准差。2011 lnexp2200 xxxxo对数正态分布的均值是:(3-10)o对数正态分布的方差是:(3-11)2exp2exp)(2502TxE1exp2exp1exp2exp)(225022TxV可靠度函数 失效率函数3.8 3.8 威布尔威布尔(Weibull)(Weibu

    8、ll)分布分布oWeibull采用“链式”模型研究、描述了结构强度和寿命问题,假设一个结构是由 n 个小元件串联而成,将结构看成是由 n 个环构成的一条链子,其强度(或寿命)取决于最薄弱环的强度(或寿命)。单个链的强度(或寿命)为一随机变量,设各环强度(或寿命)相互独立,分布相同,则求链强度(或寿命)的概率分布就变成求极小值分布问题,由此得出了威布尔分布函数。o由于威布尔分布是根据最弱环节模型或串联模型得到的,能充分反映材料缺陷等因素对材料疲劳寿命的影响,所以作为材料或零件的寿命分布模型或给定寿命下的疲劳强度模型比较合适。o 三参数威布尔分布的密度函数为 (3-13)o 威布尔分布的均值 (3-14)o 威布尔分布的方差 (3-15)1()()exp,()0 xxxf xx1()1E x 1121)(22xVo如果1,威布尔分布的均值小于,且随着x的减小接近于。随着增长到无穷,威布尔分布的方差减小,且无限接近于0。o风险函数 失效率函数o谢谢!

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:最新-第3章-可靠性中常用的概率分布-PPT课件.ppt
    链接地址:https://www.163wenku.com/p-3533469.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库