最新-第3章-可靠性中常用的概率分布-PPT课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新-第3章-可靠性中常用的概率分布-PPT课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 可靠性 常用 概率 分布 PPT 课件
- 资源描述:
-
1、第第3 3章章 可靠性中常用的概率分布可靠性中常用的概率分布 o 可靠性设计的数学基础是概率论与数理统计。o 产品失效是随机事件。o 载荷、强度等设计变量为随机变量。o 系统与零件之间的关系要在概率框架下考虑。o 随机变量样本数据统计处理、分布拟合、参数估计、概率计算、置信度确定、等等。3.1 3.1 分布特征分布特征o随机变量分为离散型和连续型两类:n 离散型随机变量的取值xi是可数的。n 连续型随机变量x在其定义域内取任意值。o概率密度函数必须满足:n 对于所有x的值,n 对于连续型分布,n 对离散型的分布,o积累分布函数是随机变量X小于某个具体值的概率:P(Xx)。连续型随机变量的积累分
2、布函数定义为:(3-1)0)(xf 1)(dxxf1)(nnxpxdfxF)()(o概率论中有多种分布函数。不同的分布函数是在不同背景下提出来的,适用于不同的场合。o对于可靠性问题,涉及的都是小概率问题。因此,更关心分布函数在其定义域中对应于小概率密度部分的细节特征。o“总体上相近”、或低阶数字特征(例如均值和标准差)相同的两种分布,在小概率问题中可能表现出很大的差别。例如,对于图(下左)中所示的两种分布形式(一种为Weibull分布,另一种为正态分布),虽然它们的概率密度函数曲线差别很小,但其累积分布函数(反映可靠性特征)在小概率区域的差别却十分显著,如图(下右)所示。3.23.2二项分布二
3、项分布o试验 E 只有两种可能的结果 A 和,P(A)=p,P()=q。用 X 表示在 n 重独立试验中事件 A 发生的次数,则 X 是一个随机变量,它的可能取值为 0,1,2,k,n,在这种情形 X 服从的概率分布称为二项分布,记为:XB(n,p),其概率分布为:(3-2)o二项分布的数字特征:E(X)=np,D(X)=np(1-p)。o二项分布用途很广泛产品的质量检验、描述表决系统的可靠性。),.,2,1,0()1(nkppCkXPknkkn3.33.3泊松泊松(Poisson)(Poisson)分布分布o泊松分布:(3-3)o泊松分布的数字特征为:E(X)=,D(X)=。!kekXPk)
4、,.,2,1,0()1(nkppCkXPknkkn泊松过程泊松过程泊松随机过程作为一种重要的计数过程,可以很好地用于描述“顾客流”、“粒子流”、“信号流”等事件的概率特性。o设为一计数过程,且满足以下条件:o(1)N(0)=0;o(2)是一个独立增量过程,即任取 时,N(t1),相互独立;o(3)对于充分小的 ,有0),(ttN0),(ttNmttt210)()(12tNtN)()(1mmtNtN0t)(2)()()()(1)()(totNttNPtotttNttNPo满足上述条件的计数过程 是参数为 的非时齐泊松随机过程,且 有:o当 时,有 0),(ttN0,0)(tt,0,tw,0mww
展开阅读全文