矿井通风与安全-6-通风网络及风量分配与调节-课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《矿井通风与安全-6-通风网络及风量分配与调节-课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 矿井 通风 安全 网络 风量 分配 调节 课件
- 资源描述:
-
1、矿井通风与安全矿井通风与安全中国矿业大学中国矿业大学第六章 通风网络风量分配与调节6.1 风网的基本术语6.2 风网的形式与绘制6.3 风量分配基本规律6.4 风网参数计算6.5 局部风量调节方法6.6 总风量调节6.7 多台通风机联合运转的相互调节6.1 风网的基本术语n 1.节点 三条或三条以上风道的交点;断面或支护方式不同的两条风道,其分界点有时也可称为节点。n 2.分支 两节点间的连线,也叫风道。在风网图上,用单线表示分支。其方向即为风流的方向,箭头由始节点指向末节点。n 3路 由若干方向相同的分支首尾相接而成的线路,即某一分支的末节点是下一分支的始节点。n4回路和网孔 由若干方向并不
2、都相同的分支所构成的闭合线路,其中有分支者叫回路,无分支者叫网孔。n5假分支 风阻为零的虚拟分支。一般是指通风机出口到进风井口虚拟的一段分支。n6生成树 风网中全部节点而不构成回路或网孔的一部分分支构成的图形。每一种风网都可选出若干生成树。n7.弦 在任一风网的每棵树中,每增加一个分支就构成一个独立回路或网孔,这种分支叫做弦(余树弦)。6.2 风网的形式与绘制通风网络联结形式很复杂,基本联结形式分为:n串联通风网络串联通风网络n并联通风网络并联通风网络n角联通风网络角联通风网络n复杂联结通风网络复杂联结通风网络6.2.1 串联通风网络 由两条或两条以上的分支彼此首尾相联,中间没有分叉的线路叫做
3、串联风路。二条或二条以上的分支自风流能量相同的节点分开到能量相同的节点汇合,形成一个或几个网孔的总回路叫做并联风网。如右图所示。6.2.2 并联通风网络 在简单并联风网的始节点和末节点之间有一条或几条风路贯通的风网叫做角联风网。贯通的分支习惯叫做对角分支。单角联风网只有一条对角分支,多角联风网则有两条或两条以上的对角分支。6.2.3 角联通风网络 由串联、并联、角联和更复杂的联结方式所组成的通风网路,统称为复杂通风网路。6.2.4 复杂联结通风网络复杂风网6.3 风量分配基本规律风流在通风网络内流动时,除服从能量守恒方程(伯努利方程)外,还遵守以下规律:风量平衡定律风压平衡定律阻力定律6.3.
4、1 风量平衡定律单位时间内流入一个节点的空气质量单位时间内流出该节点的空气质量。由于矿井空气不压缩,故可用空气的体积流量(即风量)来代替空气的质量流量。在通风网络中,流进节点或闭合回路的风量流出节点或闭合回路的风量,即任一节点或闭合回路的风量代数和为零。对于流进节点的情况:1 42 43 44 54 60QQQQQ对于流进闭合回路的情况:1 23 45 67 8QQQQ 把上面的式子写成一般的数学式:n 上式表明;流入节点、回路或网孔的风量与流出节点、回路或网孔的风量的代数和等于零。一般取流入的风量为正,流出的风量为负。10niiQ 在任一闭合回路中,无扇风机工作时,各巷道风压降的代数和为零。
5、即顺时针的风压降等于反时针的风压降。有扇风机工作时,各巷道风压降的代数和等于扇风机风压与自然风压之和。6.3.2 风压平衡定律2 44 55 72 7hhhh2 44 55 72 70hhhh10niihn 该式表明:回路或网孔中,不同方向的风流风压或阻力的代数和等于零。一般取顺时针方向的风压为正,逆时针方向的风压为负。由右图得:一般形式为:如图所示矿井,平峒口l和进风井口2的标高差Zm;风道2-3和1-3构成敞开并联风网。在2-3风道上的辅助通风机,风压hf作用方向和顺时针方向一致;l和2两点的地表大气压力分别为P0和P0,1和2两点高差间的地表空气密度平均值为,进风井内的空气密度平均值为,
6、则:00PPZ gn据风流能量方程,得平峒1-3段的风压为:式中,P3、hv3分别是3点的绝对静压和速压。n风路2-3段的风压是风道2-2和3-3段的风压之和,即:1 3033033()()vvhPPhPZgPh2 30332 23 32233()()()vvvhhhPPhZ gPhPh式中:P2和P3 分别是辅助通风机进风口2和出风口3的绝对静压;hv2和hv3分别是辅助通风机进风口和出风口的速压。因:则:即:3322()fvvhPhPh2 3033033()()()fvvfhPhPhZgPZgPhhZg2-31-3-(-)fhhhZ r r gn因敞开并联风网内的自然风压是:n因:或n一般
7、形式为:()nhZ2 31 3fnhhhh2 31 30fnhhhh10nifnihhhn上式即风压平衡定律,其意义为对于任一个网孔或者回路而言,其风压的代数和与作用在其上的机械风压和自然风压之差值为零。n 上式的适用条件是:取顺时针风流方向风压为正;网孔或回路中的机械风压和自然风压的作用方向都是顺时针方向。6.3.3 阻力定律风流在通风网络中流动,绝大多数属于完全紊流状态,遵守阻力定律,即:hi=RiQi2式中:hi巷道的风压降;Ri巷道的风阻;Qi通风巷道的风量。6.4 风网参数计算n串联通风网路n并联通风网路n简单角联通风网路n复杂风网6.4.1 串联网路n 1、风量关系式:Q0=Q1=
8、Q2=Q3=Qn上式表明:串联风路的总风量等于各条分支的风量。n2、风压关系式:h0=h1+h2+h3+hn上式表明:串联风路的总风压等于其中各条分支的风压之和。n3、风阻关系式:R0=R1+R2+R3+Rn上式表明:串联风路的总风阻等于其中各条分支的风阻之和。6.4.2 并联网路n1、风量关系式:Q0=Q1+Q2+Q3+Qn上式表明:并联风路的总风量等于各分支的风量之和。n2、风压关系式:h0=h1=h2=h3=hn上式表明:并联风路的总风压等于各分支的风压。3、风阻关系式 因为:代入并联风路的风量关系式,根据风压关系得式中,m为1到n条风路中的某一条风路。上式表明,并联风路的总风阻和各条分
9、支的风阻成复杂的繁分数关系。对于简单并联风网(n2),有:iiihQR221111()()mnnmiiiiRRRRR12221221(1)(1)RRRRRRR4、自然分配风量的计算 因hhm,即RQ2=RmQm2n在简单并联风网中,第一和第二条分支的自然分配风量的计算式分别为:1121QQRR2211QQRR1mnmiiQQRR6.4.3 简单角联网路 如图所示:在单角联风网中,对角分支5的风流方向,随着其它四条分支的风阻值R1、R2、R3、R4的变化,而有以下三种变化:n当风量Q5向上流时,由风压平衡定律hlh2,h3h4;由风量平衡定律Q1Q4。则:R1Q12R2Q22 R1Q12R2Q4
10、2 R3Q32 R4Q42 R3Q12 1,便可判定Q5向上流,如得K1,而且K值越大,Q5向上流就越稳定。故可根据实际情况,采取加大R1或R4,减少R2或R3的技术措施,并不断进行调整,使K始终保持最大的合理值,以保证Q5的方向和数量始终稳定。6.4.4 复杂风网n 新风在被送到各用风地点之前,以及各用风地点用过的回风,都要经过许多风路,这些风路有时形成复杂风网。在风速不超限的条件下,这些复杂风网中各条分支通过的风量任其自然分配,需通过计算确定。n 计算复杂风网中自然分配风量的目的,主要是为了掌握复杂风网的通风总阻力和总风阻,其次是为了验算各风道的风速是否符合规程的规定。6.5 局部风量调节
11、方法n增阻调节法n降阻调节法n增压调节法6.5.1 增阻调节法 增阻调节法:以并联网路中阻力大的风路的阻力值为基础,在各阻力较小的风路中增加局部阻力(安装调节风门、窗),使各条风路的阻力达到平衡,以保证各风路的风量按需供给。n1增阻调节的计算 有一并联风网,其中R10.8Ns2/m8,R21.2Ns2/m8。若总风量Q30m3/s,则该并联风网中自然分配的风量分别为:则 Q2QQ1=3016.5=13.5m3/s31123016.5,/0.8111.2QQmsRRn 如按生产要求,1分支的风量应为Q15m3/s,2分支的风量应为Q225m3/s,显然自然分配的风量不符合要求,按上述风量要求,两
12、分支的阻力分别为:n 为保证按需供风,必须使两分支的风压平衡。为此,需在1分支的回风段设置一调节风门,使它产生一局部阻力hev=h2h1730Pa。22111222220.8 5201.2 25750hRQPahRQPan 调节风门的形式如右图所示,在风门或风墙的上部开一个面积可调的矩形窗口,通过改变调节风门的开口面积来改变调节风门对风流所产生的阻力hw,使hwhev730Pa。n 用下式计算调节风门的面积:或式中,Rw调节风门的风阻,Rwhw/Q2,Ns2/m8。n 上式的由来是:hw主要是由于风流通过调节风门时,风流收缩到最小断面S2以后,又突然扩大到巷道断面S所造成的冲击损失。0.759
13、wwQSSQS h28,/1 0.759wwSSN smSR 根据水力学理论,这项损失可用下式表示:n 式中 v2风流通过调节风门后在最小收缩断面处的平均风速m/s;v巷道内的平均风速,m/s;空气的密度,kg/m3。根据实验,风流通过调节风门时的速度变化具有以下比例关系:n式中 v1风流在调节风门处的平均风速,m/s。22(),2wvvhPa211.61.8 1.7vvvv 设通过调节风门和巷道的风量为Q,巷道断面积为S,则上式变为:取1.2kg/m3,得:211.7()1.7()wQQvvvvSS 21.7()1.22wwQQSSh 化简上式得:在上例中,若1分支设置调节风门处的巷道断面S
14、14m2,则算出调节风门的面积为:即在1分支设置一个面积为0.23m2的调节风门就能保证1和2分支都得到所需要的风量5和25m3/s。28,/0.759wwQSSN smQS h25 40.2350.759 4 730wSm2增阻调节的分析1)增阻调节使风网总风阻增加,在一定条件下可能达不到风量调节的预期效果。如右图所示,已知主要通风机风压曲线I和两分支的风阻曲线R1、R2,并联风网的总风阻曲线R。R与I交点a即为主要通风机的工作点,自a作垂线和横坐标相交,得出矿井总风量Q。从a作水平线和R1、R2交于b、c两点,由这两点作垂线分别得两风路的风量Q1和Q2。如在1风路中安设一风阻为Rw的调节风
15、门,则该风路的总风阻为R1R1Rw。在图上绘出R1曲线,并绘出R1和R2并联的风阻曲线R。由R与I的交点a得出调节后的矿井总风量Q。由a作水平线交R1和R2于b和c,自这两点得出风量分别为Q1和Q2。当风机性能不变时,由于矿井总风阻增加,使总风量减少,其减少值为QQQ,安装调节风门的分支中风量也减少,其减少值为Q1Q1Q1;另一分支风量增加,其增加值为Q2Q2Q2。显然减少的多,增加的少,其差值就等于总风量的减少值,即Q=Q1Q2。2)总风量的减少值与主要通风机性能曲线的陡缓有关。如右图所示,I为轴流式通风机的风压曲线,为离心式通风机的风压曲线。R、R为调节前后的风阻曲线,与I、分别交于a、b
16、和a、b;从而得出总风量的减少值Q和Q。从图中看出,QQ,表明扇风机的风压曲线愈陡,总风量的减少值愈小,反之则愈大。3)增阻调节有一定的范围,超出这范围可能达不到调节的目的。在上页图中,若主要通风机性能曲线不变,且取 R10.59Ns2/m8,R2=1.64Ns2/m8。当不断改变调节风门风阻Rw时,可以得到并联风路中各分支对应的风量及其变化,如右图。3.使用增阻调节法的注意事项n 1)调节风门应尽量安设在回风巷道中,以免妨碍运输。当非安设在运输巷道不可时,则可采取多段调节,即用若干个面积较大的调节风门来代替一个面积较小的调节风门。n2)在复杂的风网中,要注意调节风门位置的选择,防止重复设置,
17、避免增大风压和电耗。4.增阻调节法的优缺点与适用条件优点:简便易行,是采区内巷道间的主要调节措施。缺点:使矿井的总风阻增加,若风机风压曲线不变,势必造成矿井总风量下降,要想保持总风量不减,就得提高风压,增加通风电力费用。因此,在安排产量和布置巷道时,尽量使网孔中各风路的阻力不要相差太悬殊,以避免在通过风量较大的主要风路中安设调节风门。6.5.2 降阻调节法降阻调节法与增阻调节法相反,它是以并联网路中阻力较小风路的阻力值为基础,使阻力较大的风路降低风阻,以达到并联网路各风路的阻力平衡。巷道中的风阻包括摩擦风阻和局部风阻。当局部风阻较大时,应首先降低局部风阻;当局部风阻较小摩擦风阻较大时,则应降低
18、摩擦风阻。降低摩擦风阻的主要方法是扩大巷道断面或改变支架类型(即改变摩擦阻力系数)。1.降阻调节的计算如图并联风网,两巷道的风阻分别为R1和R2,所需风量为Q1和Q2,则两巷道的阻力分别为:h1R1Q12,h2R2Q22如果h1h2,则以h2为依据,把h1减到h1,为此须将R1降到R1,即:h1R1Q12 h2,其中:2121hRQ 摩擦阻力公式:降阻的主要办法是扩大巷道的断面。如把巷道全长L(m)的断面扩大到S1,则式中,1巷道1扩大后的摩擦阻力系数,Ns2/m4;U1巷道1扩大后的周界,随断面大小和形状而变。3LURS111131L URSC决定于巷道断面形状的系数,对梯形巷道:C4.03
19、4.28;对三心拱巷道:C3.84.06;对半圆拱巷道,C3.784.11。由上式得到巷道1扩大后的断面积为:11,UC Sm2211511(),LCSmR 如果所需降阻的数值不大,而且客观上又无法采用扩大巷道断面的措施时,可改变巷道壁面的平滑程度或支架型式,以减少摩擦阻力系数来调节风量。改变后的摩擦阻力系数可用下式计算:2.5241111,/RSNsmL C2.降阻调节的分析降阻调节的优点是使矿井总风阻减少。若风机风压曲线不变,调节后,矿井总风量增加。降阻调节多在矿井产量增大、原设计不合理、主要巷道年久失修的情况下,用来降低主要风流中某一段巷道的阻力。一般,当所需降低的阻力值不大时,应首先考
20、虑减少局部阻力。另外,也可在阻力大的巷道旁侧开掘并联巷道。在一些老矿中,应注意利用废旧巷道供通风用。6.5.3 增压调节法1.增压调节的计算 如图所示,一采区和二采区所需要的风量分别为27.07和34.7m3/s,风阻分别为0.69和1.27Ns2/m8。要使一、二采区得到所需的风量,两采区将分别产生505.6Pa、1529.2Pa的阻力。总进风段1-2的风阻为0.23Ns2/m8,通过61.77m3/s的总风量时,将产生877.6Pa的阻力,总回风段3-4的风阻为0.02Ns2/m8,则产生76.3Pa的阻力。主要通风机附近的漏风量为6.83m3/s,通过主要通风机的风量为68.6m3/s。
21、如果采用增加风压的调节方法,在阻力较大的二采区内安设辅助通风机的方法有:n1)选择合适的辅助通风机,但不调整主要通风机的风压曲线。如图所示,主要通风机是70B2-21型、24号、600r/min的轴流式通风机,动轮叶片安装角度是27.5,静风压特性曲线是曲线,这时风机的工作点是a点。两个并联采区以外,总进风段和总回风段总阻力为:h1-2h3-4877.6+76.3953.9Pa 当矿井的自然风压很小或可忽略不计时,主要通风机能够供给两个并联采区使用的剩余风压为:hfa(h1-2h3-4)1519953.9565.1 Pa 二采区按需通过34.7m3/s的风量时,其阻力是1529.2Pa。这个数
展开阅读全文