第2章电力电子器件概述-课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第2章电力电子器件概述-课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电力 电子器件 概述 课件
- 资源描述:
-
1、1第第2章章 电力电子器件电力电子器件2电子技术的基础电子技术的基础 电子器件:晶体管和集成电路电子器件:晶体管和集成电路电力电子电路的基础电力电子电路的基础 电力电子器件电力电子器件本章主要内容:本章主要内容:概述电力电子器件的概念概念、特点特点和分类分类等问题。介绍常用电力电子器件的工作原理工作原理、基本特性基本特性、主主要参数要参数以及选择和使用中应注意问题。第第2章章 电力电子器件电力电子器件引言引言32.1 电力电子器件概述电力电子器件概述41 1)概念)概念:电力电子器件电力电子器件(Power Electronic Device)可直接用于主电路中,实现电能的变换或控制的电子器件
2、。主电路(主电路(Main Power Circuit)电气设备或电力系统中,直接承担电能的变换或控制任务的电路。2 2)分类)分类:电真空器件电真空器件 (汞弧整流器、闸流管)半导体器件半导体器件 (采用的主要材料硅)仍然2.1.1 电力电子器件的概念和特征电力电子器件的概念和特征电力电子器件电力电子器件5能处理电功率的能力,一般远大于处理信息的电子器件。电力电子器件一般都工作在开关状态。电力电子器件往往需要由信息电子电路来控制。电力电子器件自身的功率损耗远大于信息电子器件,一般都要安装散热器。2.1.1 电力电子器件的概念和特征电力电子器件的概念和特征3)同处理信息的电子器件相比的一般特征
3、:)同处理信息的电子器件相比的一般特征:6通态损耗通态损耗是器件功率损耗的主要成因。器件开关频率较高时,开关损耗开关损耗可能成为器件功率损耗的主要因素。主要损耗通态损耗断态损耗开关损耗关断损耗开通损耗2.1.1 电力电子器件的概念和特征电力电子器件的概念和特征 电力电子器件的损耗电力电子器件的损耗7电力电子系统电力电子系统:由控制电路控制电路、驱动电路驱动电路、保护电路保护电路 和以电力电子器件为核心的主电路主电路组成。图2-1 电力电子器件在实际应用中的系统组成控制电路检测电路驱动电路RL主电路V1V2保护电路在主电路和控制电路中附加一些电路,以保证电力电子器件和整个系统正常可靠运行2.1.
4、2 应用电力电子器件系统组成应用电力电子器件系统组成电气隔离控制电路8半控型器件(半控型器件(Thyristor)通过控制信号可以控制其导通而不能控制其关断。全控型器件全控型器件(IGBT,MOSFET)通过控制信号既可控制其导通又可控制其关 断,又称自关断器件。不可控器件不可控器件(Power Diode)不能用控制信号来控制其通断,因此也就不需要驱动电路。2.1.3 电力电子器件的分类电力电子器件的分类按照器件能够被控制的程度,分为以下三类:按照器件能够被控制的程度,分为以下三类:9电流驱动型电流驱动型 通过从控制端注入或者抽出电流来实现导通或者 关断的控制。电压驱动型电压驱动型 仅通过在
5、控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。2.1.3 电力电子器件的分类电力电子器件的分类 按照驱动电路信号的性质,分为两类:按照驱动电路信号的性质,分为两类:10 按照驱动电路加在电力电子器件控制端和按照驱动电路加在电力电子器件控制端和公共端之间信号的波形,分为两类:公共端之间信号的波形,分为两类:脉冲触发型脉冲触发型电平控制型电平控制型 按照器件内部载流子参与导电情况,分为按照器件内部载流子参与导电情况,分为三类:三类:单极性单极性双极性双极性复合型复合型11本章内容本章内容:介绍各种器件的工作原理工作原理、基本特性基本特性、主要参数主要参数以及选择和使用中应注意的一
6、些问题。集中讲述电力电子器件的驱动驱动、保护和串保护和串、并联使并联使用用这三个问题。学习要点学习要点:最重要的是掌握其基本特性基本特性。掌握电力电子器件的型号命名法命名法,以及其参数和特参数和特性曲线的使用方法性曲线的使用方法。2.1.4 本章学习内容与学习要点本章学习内容与学习要点122.2 不可控器件不可控器件电力二极管电力二极管13 Power Diode结构和原理简单,工作可靠,自20世纪50年代初期就获得应用。快恢复二极管和肖特基二极管,分别在中、高频整流和逆变,以及低压高频整流的场合,具有不可替代的地位。2.2 不可控器件不可控器件电力二极管电力二极管引言引言整流二极管及模块14
7、14电力二极管实物图15基本结构和工作原理与信息电子电路中的二极管一样。由一个面积较大的PN结和两端引线以及封装组成的。从外形上看,主要有螺栓型和平板型两种封装。图2-2 电力二极管的外形、结构和电气图形符号 a)外形 b)结构 c)电气图形符号2.2.1 PN结与电力二极管的工作原理结与电力二极管的工作原理AKAKa)IKAPNJb)c)AK16半导体PN结P型、N型半导体和PN结17单向导电性单向导电性 正向接法时内电场被削正向接法时内电场被削弱,扩散运动强于漂移弱,扩散运动强于漂移运动,掺杂形成的多数运动,掺杂形成的多数载流子导电,等效电阻载流子导电,等效电阻较小。较小。反向接法时内电场
8、被增反向接法时内电场被增强,漂移运动强于扩散强,漂移运动强于扩散运动,光热激发形成的运动,光热激发形成的少数载流子导电,等效少数载流子导电,等效电阻很大。电阻很大。17半导体二极管的符号及正反向接法18 状态参数正向导通反向截止反向击穿电流正向大几乎为零反向大电压维持1V反向大反向大阻态低阻态高阻态二极管的基本原理就在于PN结的单向导电性这一主要特征。PN结的反向击穿(两种形式)雪崩击穿齐纳击穿均可能导致热击穿2.2.1 PN结与电力二极管的工作原理结与电力二极管的工作原理 PN结的状态19PN结的电荷量随外加电压而变化,呈现电容效电容效应应,称为结电容结电容CJ,又称为微分电容微分电容。结电
9、容按其产生机制和作用的差别分为势垒电势垒电容容CB和扩散电容扩散电容CD。电容影响PN结的工作频率,尤其是高速的开关状态。2.2.1 PN结与电力二极管的工作原理结与电力二极管的工作原理 PN结的电容效应:20RCK(N)A(P)PN结高频等效电路结高频等效电路21主要指其伏安特性伏安特性门槛电压门槛电压UTO,正向电流IF开始明显增加所对应的电压。与IF对应的电力二极管两端的电压即为其正向电正向电压降压降UF。承受反向电压时,只有微小而数值恒定的反向漏电流。图2-4 电力二极管的伏安特性2.2.2 电力二极管的基本特性电力二极管的基本特性1)静态特性静态特性IOIFUTOUFU222.2.2
10、 电力二极管的基本特性电力二极管的基本特性a)IFUFtFt0trrtdtft1t2tURURPIRPdiFdtdiRdtub)UFPiiFuFtfrt02V 图图2-6 电力二极管的动态过程波形电力二极管的动态过程波形a)正向偏置转换为反向偏置正向偏置转换为反向偏置 b)零偏置转换为正向偏置零偏置转换为正向偏置 2)动态特性动态特性 因为因为结电容结电容的存在,电压的存在,电压电流特性是随电流特性是随时间变化的,这就是电力二极管的动态特性,时间变化的,这就是电力二极管的动态特性,并且往往专指反映通态和断态之间转换过程的并且往往专指反映通态和断态之间转换过程的开关特性开关特性。由正向偏置转换为
11、反向偏置由正向偏置转换为反向偏置 电力二极管并不能立即关断,而是须经电力二极管并不能立即关断,而是须经过一段短暂的时间才能重新获得反向阻断能力,过一段短暂的时间才能重新获得反向阻断能力,进入截止状态。进入截止状态。在关断之前有较大的反向电流出现,并在关断之前有较大的反向电流出现,并伴随有明显的反向电压过冲。伴随有明显的反向电压过冲。延迟时间延迟时间:td=t1-t0 电流下降时间电流下降时间:tf=t2-t1 反向恢复时间反向恢复时间:trr=td+tf 恢复特性的软度恢复特性的软度:tf/td,或称恢复系,或称恢复系 数,数,用用Sr表示。表示。t0:正向正向电流降电流降为零的为零的时刻时刻
12、t1:反向电反向电流达最大流达最大值的时刻值的时刻t2:电流变电流变化率接近化率接近于零的时于零的时刻刻232.2.2 电力二极管的基本特性电力二极管的基本特性UFPuiiFuFtfrt02V由零偏置转换为正向偏置由零偏置转换为正向偏置 先出现一个先出现一个过冲过冲UFP,经,经过过一段时间才趋于接近稳态压降一段时间才趋于接近稳态压降的某个值(如的某个值(如2V)。)。正向恢复时间正向恢复时间tfr 出现电压过冲的原因出现电压过冲的原因:电电导调制效应导调制效应起作用所需的大量起作用所需的大量少子需要一定的时间来储存,少子需要一定的时间来储存,在达到稳态导通之前管压降较在达到稳态导通之前管压降
13、较大;正向电流的上升会因器件大;正向电流的上升会因器件自身的自身的电感电感而产生较大压降。而产生较大压降。电流上升率电流上升率越大,越大,UFP越高。越高。图图2-6 电力二极管的动态过程波形电力二极管的动态过程波形 b)零偏置转换为正向偏置零偏置转换为正向偏置 24额定电流额定电流在指定的管壳温度和散热条件下,其允许流过的最大工频正弦半波电流的平均值。IF(AV)是按照电流的发热效应来定义的,使用时应按有效值相等的原则有效值相等的原则来选取电流定额,并应留有一定的裕量。2.2.3 电力二极管的主要参数电力二极管的主要参数1)正向平均电流正向平均电流IF(AV)25在指定温度下,流过某一指定的
14、稳态正向电流时对应的正向压降。3)反向重复峰值电压反向重复峰值电压URRM对电力二极管所能重复施加的反向最高峰值电压。使用时,应当留有两倍的裕量。4)反向恢复时间)反向恢复时间trr trr=td+tf2.2.3 电力二极管的主要参数电力二极管的主要参数2)正向压降正向压降UF26结温结温是指管芯PN结的平均温度,用TJ表示。TJM是指在PN结不致损坏的前提下所能承受的最高平均温度。TJM通常在125175C范围之内。6)浪涌电流浪涌电流IFSM指电力二极管所能承受最大的连续一个或几个工频周期的过电流。2.2.3 电力二极管的主要参数电力二极管的主要参数5)最高工作结温)最高工作结温TJM27
15、1)普通二极管普通二极管(General Purpose Diode)又称整流二极管(Rectifier Diode)多用于开关频率不高(1kHz以下)的整流电路其反向恢复时间较长正向电流定额和反向电压定额可以达到很高按照正向压降、反向耐压、反向漏电流等性能,特别是反向恢复特性的不同介绍。2.2.4 电力二极管的主要类型电力二极管的主要类型28简称快速二极管快恢复外延二极管快恢复外延二极管 (Fast Recovery Epitaxial DiodesFRED),其trr更短(可低于50ns),UF也很低(0.9V左右),但其反向耐压多在1200V以下。从性能上可分为快速恢复和超快速恢复两个等
16、级。前者trr为数百纳秒或更长,后者则在100ns以下,甚至达到2030ns。2)快恢复二极管快恢复二极管 (Fast Recovery DiodeFRD)29肖特基二极管的弱点弱点反向耐压提高时正向压降会提高,多用于200V以下。反向稳态损耗不能忽略,必须严格地限制其工作温度。肖特基二极管的优点优点反向恢复时间很短(1040ns)。正向恢复过程中也不会有明显的电压过冲。反向耐压较低时其正向压降明显低于快恢复二极管。效率高,其开关损耗和正向导通损耗都比快速二极管还小。2.2.4 电力二极管的主要类型电力二极管的主要类型3.肖特基二极管肖特基二极管 以金属和半导体接触形成的势垒为基础的二极管称为
17、肖特基势垒二极管(Schottky Barrier Diode SBD)。302.3 半控器件半控器件晶闸管晶闸管312.3 半控器件半控器件晶闸管晶闸管引言引言1956年美国贝尔实验室发明了晶闸管。1957年美国通用电气公司开发出第一只晶闸管产品。1958年商业化。开辟了电力电子技术迅速发展和广泛应用的崭新时代。20世纪80年代以来,开始被全控型器件取代。能承受的电压和电流容量最高,工作可靠,在大容量的场合具有重要地位。晶闸管晶闸管(Thyristor):晶体闸流管,可控硅整流器(Silicon Controlled RectifierSCR)32图2-6 晶闸管的外形、结构和电气图形符号a
18、)外形 b)结构 c)电气图形符号2.3.1 晶闸管的结构与工作原理晶闸管的结构与工作原理外形有螺栓型和平板型两种封装。有三个联接端。螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接且安装方便。平板型晶闸管可由两个散热器将其夹在中间。AAGGKKb)c)a)AGKKGAP1N1P2N2J1J2J3332.3.1 晶闸管的结构与工作原理晶闸管的结构与工作原理常用晶闸管的结构螺栓型晶闸管晶闸管模块平板型晶闸管外形及结构3435晶闸管的结构、符号和结构模型362.3.1 晶闸管的结构与工作原理晶闸管的结构与工作原理式中1和2分别是晶体管V1和V2的共基极电流增益;ICBO1和ICBO2分别是V1和V
19、2的共基极漏电流。由以上式可得:图2-7 晶闸管的双晶体管模型及其工作原理a)双晶体管模型 b)工作原理 按晶体管的工作原理晶体管的工作原理,得:111CBOAcIII222CBOKcIIIGAKIII21ccAIII(2-2)(2-1)(2-3)(2-4))(121CBO2CBO1G2AIIII(2-5)372.3.1 晶闸管的结构与工作原理晶闸管的结构与工作原理在低发射极电流下 是很小的,而当发射极电流建立起来之后,迅速增大。阻断状态阻断状态:IG=0,1+2很小。流过晶闸管的漏电流稍大于两个晶体管漏电流之和。开通状态开通状态:注入触发电流使晶体管的发射极电流增大以致1+2趋近于1的话,流
20、过晶闸管的电流IA,将趋近于无穷大,实现饱和导通。IA实际由外电路决定。382.3.1 晶闸管的结构与工作原理晶闸管的结构与工作原理阳极电压升高至相当高的数值造成雪崩效应阳极电压上升率du/dt过高结温较高光触发光触发光触发可以保证控制电路与主电路之间的良好绝缘而应用于高压电力设备中,称为光控晶闸管光控晶闸管(Light Triggered ThyristorLTT)。只有门极触发是最精确、迅速而可靠的控制手段只有门极触发是最精确、迅速而可靠的控制手段。其他几种可能导通的情况其他几种可能导通的情况:392.3.2 晶闸管的基本特性晶闸管的基本特性承受反向电压时,不论门极是否有触发电流,晶闸管都
21、不会导通。承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用。要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下。晶闸管正常工作时的特性总结如下:晶闸管正常工作时的特性总结如下:402.3.2 晶闸管的基本特性晶闸管的基本特性(1)正向特性IG=0时,器件两端施加正向电压,只有很小的正向漏电流,为正向阻断状态。正向电压超过正向转折电压Ubo,则漏电流急剧增大,器件开通。随着门极电流幅值的增大,正向转折电压降低。晶闸管本身的压降很小,在1V左右。正向导通雪崩击穿O+UA-UA-IAIAIHIG2IG1IG=0UboUDSMUDRMURRMURS
22、M1 1)静态特性静态特性图2-8 晶闸管的伏安特性IG2IG1IG412.3.2 晶闸管的基本特性晶闸管的基本特性反向特性类似二极管的反向特性。反向阻断状态时,只有极小的反相漏电流流过。当反向电压达到反向击穿电压后,可能导致晶闸管发热损坏。图2-8 晶闸管的伏安特性IG2IG1IG正向导通雪崩击穿O+UA-UA-IAIAIHIG2IG1IG=0UboUDSMUDRMURRMURSM(2)反向特性反向特性422.3.2 晶闸管的基本特性晶闸管的基本特性1)开通过程延迟时间延迟时间td(0.51.5 s)上升时间上升时间tr (0.53 s)开通时间开通时间tgt以上两者之和,tgt=td+tr
23、 (2-6)100%90%10%uAKttO0tdtrtrrtgrURRMIRMiA2)关断过程反向阻断恢复时间反向阻断恢复时间trr正向阻断恢复时间正向阻断恢复时间tgr关断时间关断时间t tq以上两者之和tq=trr+tgr (2-7)普通晶闸管的关断时间约几百微秒2)动态特性动态特性图2-9 晶闸管的开通和关断过程波形432.3.3 晶闸管的主要参数晶闸管的主要参数断态重复峰值电压断态重复峰值电压UDRM 在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压。反向重复峰值电压反向重复峰值电压URRM 在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压。通态(峰值)电压通
24、态(峰值)电压UT 晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰值电压。通 常 取 晶 闸 管 的UDRM和URRM中较小的标值作为该器件的额定电压额定电压。选用时,一般取额定电压为正常工作时晶闸管所承受峰值电压23倍。使用注意:使用注意:1)电压定额电压定额44额定电压大小的确定 分析计算u u2 2U Um mu u2 2如图,晶闸管承受的最大电压为如图,晶闸管承受的最大电压为22222UUUUUUmTnm则:电源电压有效值22)32(:UUTn若考虑安全裕量452.3.3 晶闸管的主要参数晶闸管的主要参数通态平均电流通态平均电流 IT(AV)在环境温度为40C和规定的冷却状态下,稳
25、定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值最大工频正弦半波电流的平均值。标称其额定电流的参数。使用时应按有效值相等的原则有效值相等的原则来选取晶闸管。维持电流维持电流 IH 使晶闸管维持导通所必需的最小电流。擎住电流擎住电流 IL 晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流。对同一晶闸管来说对同一晶闸管来说,通常通常IL约为约为IH的的24倍倍。浪涌电流浪涌电流ITSM指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流。2 2)电流定额电流定额46.额定电流(VD/VT)定义:指定的管壳温度和散热条件下,其允许流过的最大工频正弦半波
展开阅读全文