数学建模实用教程课件第4章-最优化模型-PPT课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数学建模实用教程课件第4章-最优化模型-PPT课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 实用教程 课件 优化 模型 PPT
- 资源描述:
-
1、2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社12022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社2第第4 4章章 最优化模型最优化模型 二次二次规划模型规划模型;整数整数规划模型规划模型;综合案例分析。综合案例分析。非线性非线性规划模型规划模型;线性规划模型线性规划模型;2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社3一、一、线性规划模型线性规划模型 1.问题的提出问题的提出2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社4一、一、线性规划模型线性规划模型),2,1(0),2,1(.max11njxmi
2、bxatsxczjnjijijnjjj 1.问题的提出问题的提出2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社5一、一、线性规划模型线性规划模型 2.线性规划模型的一般形式线性规划模型的一般形式2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社6一、一、线性规划模型线性规划模型 3.线性规划解的概念线性规划解的概念(1)解:)解:2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社7一、一、线性规划模型线性规划模型 3.线性规划解的概念线性规划解的概念(1)解的基本性质:)解的基本性质:2022-7-25数学建模实用教程高教出版社数
3、学建模实用教程高教出版社8一、一、线性规划模型线性规划模型 4.线性规划的求解方法线性规划的求解方法(1)用用MATLAB软件求解软件求解MATLAB(Matrix Laboratory)的基本含义是矩的基本含义是矩阵实验室;阵实验室;它是由美国它是由美国MathWorks公司研制开发的一套高公司研制开发的一套高性能的基数值计算、信息处理、图形显示等于一体性能的基数值计算、信息处理、图形显示等于一体的可视化数学工具软件。的可视化数学工具软件。2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社9一、一、线性规划模型线性规划模型 4.线性规划的求解方法线性规划的求解方法(1)用
4、用MATLAB软件求解软件求解 MATLAB的优化工具箱的优化工具箱(Optimization toolbox),它的它的基本功能基本功能:(1)求解线性规划和二次规划问题;求解线性规划和二次规划问题;(2)求解无约束条件非线性规划的极小值问题;求解无约束条件非线性规划的极小值问题;(3)求解带约束条件非线性规划极小值问题;求解带约束条件非线性规划极小值问题;(4)求解非线性方程组;求解非线性方程组;(5)求解带约束的线性最小二乘问题;求解带约束的线性最小二乘问题;(6)求解非线性最小二乘逼近和曲线拟合问题求解非线性最小二乘逼近和曲线拟合问题.2022-7-25数学建模实用教程高教出版社数学建
5、模实用教程高教出版社10一、一、线性规划模型线性规划模型 4.线性规划的求解方法线性规划的求解方法(1)用用MATLAB软件求解软件求解应用应用MATLAB优化工具箱中的函数优化工具箱中的函数linprog来求来求解线性规划问题,要求线性规划模型化为统一的解线性规划问题,要求线性规划模型化为统一的基本模型:基本模型:2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社11一、一、线性规划模型线性规划模型 4.线性规划的求解方法线性规划的求解方法(1)用用MATLAB软件求解软件求解x=linprog(C,A1,b1,A2,b2)x=linprog(C,A1,b1,A2,b2)
6、;x=linprog(C,A1,b1,A2,b2,x1,x2)x=linprog(C,A1,b1,A2,b2,x1,x2);x=linprog(C,A1,b1,A2,b2,x1,x2,opt)x=linprog(C,A1,b1,A2,b2,x1,x2,opt);%设置可选参数值,而不是采用缺省值设置可选参数值,而不是采用缺省值x=linprog(C,A1,b1,A2,b2,x1,x2,x0,opt)x=linprog(C,A1,b1,A2,b2,x1,x2,x0,opt);%x0 x0为初始解,缺省值为为初始解,缺省值为0.0.2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出
7、版社12一、一、线性规划模型线性规划模型 4.线性规划的求解方法线性规划的求解方法(1)用用MATLAB软件求解软件求解x,fv=linprog()x,fv=linprog();要求返回目标函数值要求返回目标函数值x,fv,ef=linprog()x,fv,ef=linprog();要求返回程序结束标志要求返回程序结束标志x,fv,ef,out=linprog()x,fv,ef,out=linprog();要求返回程序的优化信息要求返回程序的优化信息x,fv,ef,out,lambda=linprog()x,fv,ef,out,lambda=linprog();要求返回在程序停止时的拉格朗日乘
8、子要求返回在程序停止时的拉格朗日乘子2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社13一、一、线性规划模型线性规划模型 4.线性规划的求解方法线性规划的求解方法(2)用用Lingo软件求解软件求解LINGO(Linear INteractive and General Optimizer)的基的基本含义是交互式的线性和通用优化求解器本含义是交互式的线性和通用优化求解器 LINDO(Linear,INteractive,and Discrete Optimizer)的基本的基本含义是交互式的线性和混合优化求解器含义是交互式的线性和混合优化求解器它是美国芝加哥大学的它是美国
9、芝加哥大学的 Linus Schrage 教授于教授于1980年开发了年开发了一套用于求解最优化问题的工具包,后来经过完善和扩充,并一套用于求解最优化问题的工具包,后来经过完善和扩充,并成立了成立了LINDO SYSTEM INC2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社14一、一、线性规划模型线性规划模型 4.线性规划的求解方法线性规划的求解方法(2)用用Lingo软件求解软件求解LINGO(Linear INteractive and General Optimizer)的基的基本含义是交互式的线性和通用优化求解器本含义是交互式的线性和通用优化求解器 LINDO
10、(Linear,INteractive,and Discrete Optimizer)的基本的基本含义是交互式的线性和混合优化求解器含义是交互式的线性和混合优化求解器它是美国芝加哥大学的它是美国芝加哥大学的 Linus Schrage 教授于教授于1980年开发了年开发了一套用于求解最优化问题的工具包,后来经过完善和扩充,并一套用于求解最优化问题的工具包,后来经过完善和扩充,并成立了成立了LINDO SYSTEM INC2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社15一、一、线性规划模型线性规划模型 4.线性规划的求解方法线性规划的求解方法(2)用用Lingo软件求解
11、软件求解 LINGO功能功能:求解线性规划、二次规划、:求解线性规划、二次规划、非线性规划、目标规划、图论与网络优化、整数非线性规划、目标规划、图论与网络优化、整数规划的求解,以及一些线性和非线性方程规划的求解,以及一些线性和非线性方程(组组)、最大最小和排队论中的最优化问题求解等最大最小和排队论中的最优化问题求解等 2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社16一、一、线性规划模型线性规划模型 4.线性规划的求解方法线性规划的求解方法(2)用用Lingo软件求解软件求解 LINGO的特色的特色:它允许优化模型中的决策变量为整数,即可它允许优化模型中的决策变量为整数
12、,即可以求解整数规划,而且执行速度快以求解整数规划,而且执行速度快求解线性和非线性优化问题的简易工具求解线性和非线性优化问题的简易工具LINGO内置了一种建立最优化模型的语言,内置了一种建立最优化模型的语言,可以简便地表达大规模问题可以简便地表达大规模问题,利用利用LINGO高效的高效的求解器可快速求解并分析结果求解器可快速求解并分析结果.2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社17一、一、线性规划模型线性规划模型 4.线性规划的求解方法线性规划的求解方法(2)用用Lingo软件求解软件求解哇!哇!Lingo软件是软件是你正确的选择!你正确的选择!2022-7-2
13、5数学建模实用教程高教出版社数学建模实用教程高教出版社18一、一、线性规划模型线性规划模型 4.线性规划的求解方法线性规划的求解方法集集合合段段数数据据段段目标目标约束约束2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社19一、一、线性规划模型线性规划模型 5.线性规划的应用举例线性规划的应用举例(1)下料问题)下料问题7.4m2.9m2.1m1.5m 问题的提出:问题的提出:某单位需要加工制作某单位需要加工制作100100套工套工架,每套工架需用长为架,每套工架需用长为2.92.9米,米,2.12.1米和米和1.51.5米的米的圆钢各一根。已知原材料长圆钢各一根。已知原
14、材料长7.47.4米,现在的问题米,现在的问题是如何下料使得所用的原材料最省?是如何下料使得所用的原材料最省?2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社20一、一、线性规划模型线性规划模型 (1)下料问题)下料问题 模型模型分析分析:在每一根原材料上各一根截取在每一根原材料上各一根截取2.92.9米,米,2.12.1米和米和1.51.5米的圆钢做成一套工架,每根原米的圆钢做成一套工架,每根原材料剩下料头材料剩下料头0.90.9米,要完成米,要完成100100套工架,就需要套工架,就需要用用100100根原材料,共剩余根原材料,共剩余9090米料头。米料头。7.4m2
15、.9m2.1m1.5m0.9m2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社21一、一、线性规划模型线性规划模型7.4m2.9m2.1m1.5m0.9m2.9m1.5m1.5m1.5m2.9m2.9m0.1m1.5m2.9m2.1m2.1m0.3m2.1m2.1m1.5m0.2m1.5m2.1m1.5m0.8m1.5m1.5mx1x2x3x4x5x6ABCDEF2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社22一、一、线性规划模型线性规划模型 (1)下料问题)下料问题哇!这样分析就好建哇!这样分析就好建立数学模型了!立数学模型了!2022-7-2
16、5数学建模实用教程高教出版社数学建模实用教程高教出版社23一、一、线性规划模型线性规划模型 (1)下料问题)下料问题2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社24一、一、线性规划模型线性规划模型0,100323100221002s.t.9.08.03.02.01.00min6543216532165436421654321xxxxxxxxxxxxxxxxxxxxxxxxxz (1)下料问题)下料问题 用用Lingo软件求解软件求解2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社25一、一、线性规划模型线性规划模型 (1)下料问题)下料问题202
17、2-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社26一、一、线性规划模型线性规划模型 (1)下料问题)下料问题 用用MATLAB软件求解软件求解问题的MATLAB程序:C=0,0.1,0.2,0.3,0.8,0.9;b1=0,0,0,0,0,0;b2=100,100,100;A1=-1,0,0,0,0,0;0,-1,0,0,0,0;0,0,-1,0,0,0;0,0,0,-1,0,0;0,0,0,0,-1,0;0,0,0,0,0,-1;A2=1,2,0,1,0,1;0,0,2,2,1,1;3,1,2,0,3,1;x,fv=linprog(C,A1,b1,A2,b2)2022-7-
18、25数学建模实用教程高教出版社数学建模实用教程高教出版社27一、一、线性规划模型线性规划模型 (2)连续投资问题)连续投资问题某投资公司拟制定今后五年的投资计划,初某投资公司拟制定今后五年的投资计划,初步考虑下面的四个投资项目:步考虑下面的四个投资项目:AB2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社28一、一、线性规划模型线性规划模型 (2)连续投资问题)连续投资问题CD问题问题:现有投资金额现有投资金额100万元,如何使得第五年万元,如何使得第五年年末能够获得最大的利润。年末能够获得最大的利润。2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社
19、29一、一、线性规划模型线性规划模型 (2)连续投资问题)连续投资问题 年份项目12345Ax11x21x31x41Bx32Cx23Dx14x24x34x44x542022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社30一、一、线性规划模型线性规划模型 (2)连续投资问题)连续投资问题第第1 1年:年:将将100100万元资金全部用于项目万元资金全部用于项目A A和项目和项目D D的的投资,即投资,即10000001411 xx2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社31一、一、线性规划模型线性规划模型 (2)连续投资问题)连续投资问题2022-
20、7-25数学建模实用教程高教出版社数学建模实用教程高教出版社32一、一、线性规划模型线性规划模型 (2)连续投资问题)连续投资问题2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社33一、一、线性规划模型线性规划模型 (2)连续投资问题)连续投资问题连续投资问题的数学模型连续投资问题的数学模型:2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社34一、一、线性规划模型线性规划模型 (2)连续投资问题)连续投资问题MODEL:MODEL:sets:sets:row/1.5/;row/1.5/;arrange/1.4/;arrange/1.4/;link(r
21、ow,arrange):c,x;link(row,arrange):c,x;endsetsendsetsdata:data:c=0,0,0,0,0,0,1.40,0,0,1.25,0,0,1.15,0,0,0,0,0,0,1.06;c=0,0,0,0,0,0,1.40,0,0,1.25,0,0,1.15,0,0,0,0,0,0,1.06;enddataenddataOBJOBJmaxmax=sumsum(link(i,j):c(i,j)(link(i,j):c(i,j)*x(i,j);x(i,j);x(1,1)+x(1,4)=1000000;x(1,1)+x(1,4)=1000000;-1.0
22、6-1.06*x(1,4)+x(2,1)+x(2,3)+x(2,4)=0;x(1,4)+x(2,1)+x(2,3)+x(2,4)=0;-1.15-1.15*x(1,1)-1.06x(1,1)-1.06*x(2,4)+x(3,1)+x(3,2)+x(3,4)=0;x(2,4)+x(3,1)+x(3,2)+x(3,4)=0;-1.15-1.15*x(2,1)-1.06x(2,1)-1.06*x(3,4)+x(4,1)+x(4,4)=0;x(3,4)+x(4,1)+x(4,4)=0;-1.15-1.15*x(3,1)-1.06x(3,1)-1.06*x(4,4)+x(5,4)=0;x(4,4)+x(
23、5,4)=0;x(3,2)=400000;x(3,2)=400000;x(2,3)=300000;x(2,3)=0;);for(link(i,j):x(i,j)=0;);ENDEND 用用LINGO求解模型求解模型2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社35一、一、线性规划模型线性规划模型 (2)连续投资问题)连续投资问题问题的连续投资方案:问题的连续投资方案:第第1年:项目年:项目A为为716981.1元和项目元和项目D为为283018.9元元第第2年:项目年:项目C的投资金额为的投资金额为300000元,元,第第3年:项目年:项目B的投资为的投资为400000
24、元和项目元和项目D的投资为的投资为424528.3元,元,第第4年:投资项目年:投资项目A的金额为的金额为450000元。元。第第5年年末该公司拥有总资金为年年末该公司拥有总资金为1437500元,即收益元,即收益率为率为43.75%。2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社36一、一、线性规划模型线性规划模型 (3)运输问题)运输问题2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社37一、一、线性规划模型线性规划模型 (3)运输问题)运输问题111,2,s.t.1,2,01,2,1,2,.nijijmijjiijxaimxbjnxim jn
25、,2022-7-25数学建模实用教程高教出版社数学建模实用教程高教出版社38一、一、线性规划模型线性规划模型 (3)运输问题)运输问题 用用LINGO求解模型求解模型MODEL:MODEL:sets:sets:num_i/1.m/:anum_i/1.m/:a;num_j/1.n/:bnum_j/1.n/:b;link(num_i,num_j):c,xlink(num_i,num_j):c,x;endsetsendsetsdata:data:a=a(1),a(2),a(m)a=a(1),a(2),a(m);b=b(1),b(2),b(n)b=b(1),b(2),b(n);c=c(1,1),c(1
展开阅读全文