教学课件·数控加工与编程(第三版).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《教学课件·数控加工与编程(第三版).ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教学 课件 数控 加工 编程 第三
- 资源描述:
-
1、第第1 1章数控加工实用基础章数控加工实用基础1.1 数控加工概述数控加工概述1.2 数控系统控制原理数控系统控制原理1.3 数控机床及其坐标系统数控机床及其坐标系统1.4 数控编程基础数控编程基础1.5 数控加工的工艺处理数控加工的工艺处理1.6 数控加工的工艺指令和工艺文件数控加工的工艺指令和工艺文件1.1 数控加工概述数控加工概述1.1.1 数控加工原理和特点数控加工原理和特点 1数控加工原理数控加工原理当我们使用机床加工零件时,通常都需要对机床的各种动作进行控制,一是控制动作的先后次序,二是控制机床各运动部件的位移量。采用普通机床加工时,这种开车、停车、走刀、换向、主轴变速和开关切削液
2、等操作都是由人工直接控制的。采用自动机床和仿形机床加工时,上述操作和运动参数则是通过设计好的凸轮、靠模和挡块等装置以模拟量的形式来控制的,它们虽能加工比较复杂的零件,且有一定的灵活性和通用性,但是零件的加工精度受凸轮、靠模制造精度的影响,而且工序准备时间也很长。采用数控机床加工零件时,只需要将零件图形和工艺参数、加工步骤等以数字信息的形式,编成程序代码输入到机床控制系统中,再由其进行运算处理后转成驱动伺服机构的指令信号,从而控制机床各部件协调动作,自动地加工出零件来。当更换加工对象时,只需要重新编写程序代码,输入给机床,即可由数控装置代替人的大脑和双手的大部分功能,控制加工的全过程,制造出任意
3、复杂的零件。数控加工的原理如图1-1所示。图1-1 数控加工原理框图2数控加工的特点数控加工的特点总的来说,数控加工有如下特点:(1)自动化程度高,具有很高的生产效率。除手工装夹毛坯外,其余全部加工过程都可由数控机床自动完成。若配合自动装卸手段,则是无人控制工厂的基本组成环节。数控加工减轻了操作者的劳动强度,改善了劳动条件;省去了划线、多次装夹定位、检测等工序及其辅助操作,有效地提高了生产效率。(2)对加工对象的适应性强。改变加工对象时,除了更换刀具和解决毛坯装夹方式外,只需重新编程即可,不需要作其他任何复杂的调整,从而缩短了生产准备周期。(3)加工精度高,质量稳定。加工尺寸精度在0.0050
4、.01 mm之间,不受零件复杂程度的影响。由于大部分操作都由机器自动完成,因而消除了人为误差,提高了批量零件尺寸的一致性,同时精密控制的机床上还采用了位置检测装置,更加提高了数控加工的精度。(4)易于建立与计算机间的通信联络,容易实现群控。由于机床采用数字信息控制,易于与计算机辅助设计系统连接,形成CAD/CAM一体化系统,并且可以建立各机床间的联系,容易实现群控。1.1.2 数控加工常用术语数控加工常用术语1坐标联动加工坐标联动加工数控机床加工时的横向、纵向等进给量都是以坐标数据来进行控制的。像数控车床、数控线切割机床等是属于两坐标控制的,数控铣床则是三坐标控制的(如图1-2所示),还有四坐
5、标、五坐标甚至更多的坐标控制的加工中心等。坐标联动加工是指数控机床的几个坐标轴能够同时进行移动,从而获得平面直线、平面圆弧、空间直线和空间螺旋线等复杂加工轨迹的能力(如图1-3所示)。当然也有一些早期的数控机床尽管具有三个坐标轴,但能够同时进行联动控制的可能只是其中两个坐标轴,那就属于两坐标联动的三坐标机床。像这类机床就不能获得空间直线、空间螺旋线等复杂加工轨迹。要想加工复杂的曲面,只能采用在某平面内进行联动控制,第三轴作单独周期性进给的“两维半”加工方式。图1-2 数控机床的控制坐标数(a)两坐标数控车床;(b)三坐标数控铣床 图1-3 坐标联动加工2脉冲当量、进给速度与速度修调脉冲当量、进
6、给速度与速度修调数控机床各轴采用步进电机、伺服电机或直线电机驱动,是用数字脉冲信号进行控制的。每发送一个脉冲,电机就转过一个特定的角度,通过传动系统或直接带动丝杠,从而驱动与螺母副连结的工作台移动一个微小的距离。单位脉冲作用下工作台移动的距离就称之为脉冲当量。手动操作时数控坐标轴的移动通常是采用按键触发或采用手摇脉冲发生器(手轮方式)产生脉冲的,采用倍频技术可以使触发一次的移动量分别为0.001 mm、0.01 mm、0.1mm、1mm等多种控制方式,相当于触发一次分别产生1、10、100、1000个脉冲。3插补与刀补插补与刀补数控加工直线或圆弧轨迹时,程序中只提供线段的两端点坐标等基本数据,
7、为了控制刀具相对于工件走在这些轨迹上,就必须在组成轨迹的直线段或曲线段的起点和终点之间,按一定的算法进行数据点的密化工作,以填补确定一些中间点,如图1-4(a)、(b)所示,各轴就以趋近这些点为目标实施配合移动,这就称之为插补。这种计算插补点的运算称为插补运算。早期NC硬线数控机床的数控装置中是采用专门的逻辑电路器件进行插补运算的,称之为插补器。在现代CNC软线数控机床的数控装置中,则是通过软件来实现插补运算的。现代数控机床大多都具有直线插补和平面圆弧插补的功能,有的机床还具有一些非圆曲线的插补功能。插补加工原理见本章1.2节。图1-4 插补和刀补(a)直线插补;(b)圆弧插补;(c)刀具半径
8、补偿 1.1.3 数控加工技术的发展数控加工技术的发展1数控加工技术的发展历程数控加工技术的发展历程1949年美国Parson公司与麻省理工学院开始合作,历时三年,于1952年研制出能进行三轴控制的数控铣床样机,取名“Numerical Control”。1953年麻省理工学院开发出只需确定零件轮廓、指定切削路线,即可生成NC程序的自动编程语言。1956年德、日、苏等国分别研制出本国第一台数控机床。1959年美国Keaney&Trecker公司开发成功了带刀库,能自动进行刀具交换,一次装夹中即能进行铣、钻、镗、攻丝等多种加工功能的数控机床,这就是数控机床的新种类加工中心。我国虽然早在1958年
9、由清华大学和北京第一机床厂合作研制了第一台数控铣床,但由于历史原因,一直没有取得实质性成果。20世纪70年代初期,曾掀起研制数控机床的热潮,但当时采用的是分立元件,性能不稳定,可靠性差。1980年北京机床研究所引进日本FANUC5、7、3、6数控系统,上海机床研究所引进美国GE公司的MTC1数控系统,辽宁精密仪器厂引进美国Bendix公司的Dynapth LTD10数控系统。在引进、消化、吸收国外先进技术的基础上,北京机床研究所又开发出BS03经济型数控和BS04全功能数控系统,航天部706所研制出MNC864数控系统。“八五”期间国家又组织近百个单位进行以发展自主版权为目标的“数控技术攻关”
10、,从而为数控技术产业化奠定了基础。20世纪90年代末,华中数控自主开发出基于PC-NC的HNC数控系统,达到了国际先进水平,加大了我国数控机床在国际上的竞争力度。2数控加工技术的发展方向数控加工技术的发展方向1)高速切削受高生产率的驱使,高速化已是现代机床技术发展的重要方向之一。高速切削可通过高速运算技术、快速插补运算技术、超高速通信技术和高速主轴等技术来实现。高主轴转速可减少切削力,减小切削深度,有利于克服机床振动,传入零件中的热量大大减低,排屑加快,热变形减小,加工精度和表面质量得到显著改善。因此,经高速加工的工件一般不需要精加工。日本新泻铁工所生产的UHSIO型超高速数控立式铣床主轴最高
11、转速高达100000r/min。中等规格加工中心的快速进给速度从过去的812m/min提高到60m/min。2)高精度控制高精度化一直是数控机床技术发展追求的目标。它包括机床制造的几何精度和机床使用的加工精度控制两方面。提高机床的加工精度,一般是通过减少数控系统误差,提高数控机床基础大件结构特性和热稳定性,采用补偿技术和辅助措施来达到的。目前精整加工精度已提高到0.1m,并进入了亚微米级,不久超精度加工将进入纳米时代(加工精度达0.01m)。3)高柔性化柔性是指机床适应加工对象变化的能力。目前,在进一步提高单机柔性自动化加工的同时,正努力向单元柔性和系统柔性化发展。数控系统在21世纪将具有最大
12、限度的柔性,能实现多种用途。具体是指具有开放性体系结构,通过重构和编辑,视需要系统的组成可大可小;功能可专用也可通用,功能价格比可调;可以集成用户的技术经验,形成专家系统。4)高一体化CNC系统与加工过程作为一个整体,实现机电光声综合控制,测量造型、加工一体化,加工、实时检测与修正一体化,机床主机设计与数控系统设计一体化。5)网络化实现多种通讯协议,既满足单机需要,又能满足FMS(柔性制造系统)、CIMS(计算机集成制造系统)对基层设备的要求。配置网络接口,通过Internet可实现远程监视和控制加工,进行远程检测和诊断,使维修变得简单。建立分布式网络化制造系统,可便于形成“全球制造”。6)智
13、能化21世纪的CNC系统将是一个高度智能化的系统。具体是指系统应在局部或全部实现加工过程的自适应、自诊断和自调整;多媒体人机接口使用户操作简单,智能编程使编程更加直观,可使用自然语言编程;加工数据的自生成及智能数据库;智能监控;采用专家系统以降低对操作者的要求等。7)绿色化通过结构优化或采用新结构、新材料等,使得机床制造过程中能量消耗更低,材料更少,重量更轻;机床使用时驱动能量更小,效率更高;不用或少用冷却液,实现干切削、半干切削等节能环保的绿色加工制造方式。1.2 数控系统控制原理数控系统控制原理1.2.1 CNC硬件组成与控制原理硬件组成与控制原理CNC即计算机数控系统(Computeri
14、zed Numerical Control)的缩写,它是在硬线数控(NC)系统的基础上发展起来的,由一台计算机来完成早期NC机床数控装置的所有功能,并用存储器实现零件加工程序的存储。图1-5是小型计算机CNC系统构成。数控系统的核心是计算机数字控制装置,即CNC装置。它由硬件(数控系统本体器件)和软件(系统控制程序如编译、中断、诊断、管理、刀补和插补等)组成。系统中的一种功能,可用硬件电路实现,也可用软件实现。新一代的CNC系统,大都采用软件来实现数控系统的绝大部分功能。要增加或更新系统功能时,则只需要更换控制软件即可,因此,CNC系统较之NC系统具有更好的通用性和灵活性。图1-5 CNC系统
15、构成图1-6是典型的微处理器数控系统框图。其各组成部分功用如下所述:图1-6 微处理器数控系统框图(1)微处理器CPU及其总线。它是CNC装置的核心,由运算器及控制器两大部分组成。运算器负责数据运算;而控制器则是将存储器中的程序指令进行译码并向CNC装置的各部分发出执行操作的控制信号,且根据所接收的反馈信息决定下一步的命令操作。总线则是由物理导线构成的,分成数据线、地址线和控制线等三组。(2)存储器。它用以存放CNC装置的数据、参数和程序。它包括存放系统控制软件的只读存储器EPROM和存放中间运算结果的随机读写存储器RAM和存放零件加工程序信息的磁泡存储器或带后备电池的CMOS RAM。(3)
16、MDI/CRT接口。MDI即手动数据输入单元,CRT为显示器。由数控操作面板上的键盘输入、修改数控程序和设定加工数据,同时通过CRT显示出来。CRT常用于显示字符或图形信息。(4)输入装置(纸带读入和穿孔输出接口)。光电阅读机可将由其他纸带凿孔机所制作的纸带上的程序信息读入到CNC装置中,可直接用于控制加工或将程序转存到存储器中。有的机床还备有穿孔输出的纸带凿孔机,可将本机上编好的程序制成纸带,用于其他数控系统中。纸带输入/输出曾经是数控机床和其他计算机控制系统交换信息的主要媒介。也有的机床采用磁带机或磁盘驱动器等媒介,较之纸带输入/输出更方便。(5)数据输入/输出(I/O)接口。它是CNC装
17、置和机床驱动部件之间来往传递信息的接口,主要用于接收机械操作面板上的各种开关、按钮以及机床上各行程限位开关等信号;或将CNC装置发出的控制信号送到强电柜,以及将各工作状态指示灯信号送到操作面板等。(6)位置控制及主轴控制。它将插补运算后的坐标位置与位置检测器测得的实际位置值进行比较、放大后得到速度控制指令,去控制速度控制单元,驱动进给电机,修正进给误差,保证精度,主要在闭环或半闭环数控机床上使用。(7)可编程控制器(PLC)接口。它用来代替传统机床强电部分的继电器控制,利用逻辑运算实现各种开关量的控制。上述(1)、(2)、(3)、(4)几部分和PC电脑的功用一样,所以现代PC-NC数控系统是直
18、接用通用PC机来取代这几个组成部分的。当操作者按下机床操作面板上的“循环启动”按钮后,就向CNC装置发出中断请求。一旦CNC装置所处状态符合启动条件,则CNC装置就响应中断,控制程序转入相应的控制机床运动的中断服务程序,进行插补运算,逐段计算出各轴的进给速度、插补轨迹等,并将结果输出到进给伺服控制接口及其他输出接口,控制工作台(或刀具)的位移或其他辅助动作。这样机床就自动地按照零件加工程序的要求进行切削运动。1.2.2 CNC系统的软件结构系统的软件结构CNC系统软件是为实现CNC系统各项功能所编制的专用软件,也叫控制软件,存放在计算机EPROM中。各种CNC系统的功能设置和控制方案各不相同,
19、它们的系统软件在结构和规模上差别很大,但是一般都包括输入数据处理程序、插补运算程序、速度控制程序、管理程序和诊断程序。1输入数据处理程序输入数据处理程序它接收输入的零件加工程序,将标准代码表示的加工指令和数据进行译码、数据处理,并按规定的格式存放。有的系统还要进行补偿计算,或为插补运算和速度控制等进行预计算。(1)输入程序。(2)译码程序。(3)数据处理程序。2插补计算程序插补计算程序CNC系统根据零件加工程序中提供的数据,如线段轨迹的种类、起点和终点坐标等进行运算。根据运算结果,分别向各坐标轴发出进给脉冲。进给脉冲通过伺服系统驱动工作台或刀具作相应的运动,完成程序规定的加工任务。3速度控制程
20、序速度控制程序速度控制程序根据给定的速度值控制插补运算的频率,以保证预定的进给速度。在速度变化较大时,需要进行自动加减速控制,以避免因速度突变而造成驱动系统失步。4管理程序管理程序管理程序负责对数据输入、数据处理和插补运算等为加工过程服务的各种程序进行调度管理。管理程序还要对由面板命令、时钟信号和故障信号等引起的中断进行处理。有的管理程序可以使多道程序并行工作,如在插补运算与速度控制的空闲时间进行数据输入处理,即调用各种功能子程序,完成下一数据段的读入、译码和数据处理工作,并且保证在数据段加工过程中将下一数据段准备完毕,一旦本数据段加工完毕,就立即开始下一数据段的插补加工。5诊断程序诊断程序诊
21、断程序的功能是在程序运行中及时发现系统的故障,并指出故障的类型。也可以在运行前或故障发生后,检查系统各主要部件(如CPU、存储器、接口、开关和伺服系统等)的功能是否正常,并指出发生故障的部位。在整体结构上,CNC系统软件可有前后台型和中断型两种不同的处理方式。1.2.3 插补原理插补原理如前所述,插补是在组成轨迹的直线段或曲线段的起点和终点之间,按一定的算法进行数据点的密化工作,以确定一些中间点。将它应用于数控加工中就是:CNC装置根据程序中给定的线段方式和端点信息进行相应的数学计算,以插补运算出的中间密化点为趋近目标,不断地向各个坐标轴发出相互协调的进给脉冲或数据,使被控机械部件按趋近指定的
22、路线移动,从而最大限度地保证加工轨迹与理想轨迹相一致。如图1-7所示的直线OA,取起点O为坐标原点,终点为A(Xe,Ye)。已知M(Xm,Ym)点为动态加工点,若m点正好在OA直线上,则有:eemmYXYX0YXYXemme即 可取Fm=XeYm-XmYe 作为直线插补的偏差判别式。若Fm=0,则表明m点正好在直线上;若Fm 0,则表明m点在直线的上方;若Fm 0,则表明m点在直线下方。对于第一象限的直线,从起点(原点)出发,当Fm0时,应沿+X方向走一步;当Fm0时,则应沿+Y方向走一步;当两个方向所走的步数和终点坐标(Xe,Ye)值相等时,发出终点到达信号,停止插补。由于Fm的计算式中同时
23、有乘法和减法,计算处理较为复杂,因此实际应用中常采用迭代法或递推法进一步推算。若某处有Fm0,应沿+X方向走一步到达新点m+1(Xm+1,Ym),则新偏差为Fm+1=XeYm-Xm+1Ye=XeYm-(Xm+1)Ye=Fm-Ye若某处有Fm 0,应沿+Y方向走一步到达新点m+1(Xm,Ym+1),则新偏差为Fm+1=XeYm+1-XmYe=Xe(Ym+1)-XmYe=Fm+Xe这样偏差计算式中只需要进行加、减运算,只要将前一点的偏差值与已知的终点坐标值相加或相减,即可求得新的偏差值。可用四个节拍来说明逐点比较法插补运算的过程,如图1-7所示。图1-7 逐点比较插补法及其工作节拍 对于其他三个象
24、限的直线插补运算,可用相同的原理获得。在如图1-7中所示的圆弧的插补运算与直线插补运算法类似,只是其偏差判别式有所不同。圆弧的偏差判别式为Fm。逐点比较法能实现直线、圆弧和非圆二次曲线的插补,插补精度较高,在我国和日本数控机床中多用逐点比较法;在欧美则多用数字积分法;而对于闭环控制的机床中,则多采用时间分割法。现代大部分数控机床都具有直线和圆弧插补功能。也就是说,现代数控机床大都能加工由直线和圆弧所组成的任意轨迹图形。当需要加工非圆二次曲线轨迹时,大都是在编程计算时先采用拟合逼近方法将曲线转化为直线或圆弧后再进行加工的。22m2mRYX1.2.4 典型数控系统典型数控系统1日本日本FANUC系
25、列数控系统系列数控系统FANUC公司生产的CNC产品主要有FANUC 3/6/9、FANUC 0、FANUC 10/11/12、FANUC 15/16/18/21、FANUC 160/180/210等系列。目前我国用户主要使用的有FANUC 0、FANUC 16/18/21、FANUC160/180/210等系列。(1)FANUC 0系列。它是可组成面板装配式的CNC系统,易于组成机电一体化系统,在我国应用最广。该系列有高可靠性的Power Mate 0系列、普及型0D系列、全功能型0C系列、高性价比0i系列。系列内又分T、TT、M、ME、G、P、F等类型,其中T型用于单刀架单主轴的数控车床,
展开阅读全文