(数学课件)平面向量数量积的定义.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(数学课件)平面向量数量积的定义.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学课件 数学 课件 平面 向量 数量 定义
- 资源描述:
-
1、5.6 平面向量的数量积及运算律平面向量的数量积及运算律5.6 平面向量的数量积及运算律平面向量的数量积及运算律5.6 平面向量的数量积及运算律平面向量的数量积及运算律5.6 平面向量的数量积及运算律平面向量的数量积及运算律5.6 平面向量的数量积及运算律平面向量的数量积及运算律5.6 平面向量的数量积及运算律平面向量的数量积及运算律5.6 平面向量的数量积及运算律平面向量的数量积及运算律平面向量的数量积平面向量的数量积功功sF 一个物体在力一个物体在力F 的作用下产生的位移的作用下产生的位移s,那么力那么力F 所做的功应当怎样计算?所做的功应当怎样计算?其中力其中力F 和位移和位移s 是向量
2、,功是数量是向量,功是数量.|s|F|W cos 是是F的方向的方向 与与s的方向的方向 的夹角。的夹角。向量的夹角向量的夹角两向量的夹角范围是两向量的夹角范围是0,两个非零向量两个非零向量a 和和b,在平面上任取一点在平面上任取一点O,作作 ,,则则叫做向量叫做向量a 和和b 的夹角的夹角 AOB)1800(OB=bOA=aba 记作记作90 当当 ,a 与与b 垂直,垂直,当当 ,a 与与b 同向,同向,0 当当 ,a 与与b 反向反向180 AOBOABBab AOOAB练习一:练习一:在在 中,用字母表示下列向量的夹角:中,用字母表示下列向量的夹角:ABCABC(1);ABAC与(2)
3、;ABC与B(3)ACC与B。平面向量的数量积的定义平面向量的数量积的定义 cos|baba 已知两个非零向量已知两个非零向量a 和和b,它们的夹角为它们的夹角为 ,我们把数量,我们把数量 叫做叫做a 与与b 的数量积(或内积),记作的数量积(或内积),记作a b ,即即 cos|ba规定:零向量与任意向量的数量积为规定:零向量与任意向量的数量积为0,即即 0 0a提问提问:(1)向量的加、减法的结果是向量还是数量?数乘向量运算)向量的加、减法的结果是向量还是数量?数乘向量运算呢?向量的数量积运算呢?其正负由什么决定?呢?向量的数量积运算呢?其正负由什么决定?(2)“”能不能写成能不能写成“”
4、或者或者“”的形的形式?式?a babab练习二:练习二:2sin15,a 4cos15b ABC60。CAB60。58243-20D(1)已知)已知|p|=8,|q|=6,p和和q 的夹角是的夹角是 ,求,求p q60。a与与 b的夹角为的夹角为 ,则则 a b=_30。(3)已知)已知 中,中,=5,b=8,C=,求求BC CAa(2)已知)已知OABab 1B平面向量的数量积的几何意义平面向量的数量积的几何意义bOBaOA ,作作,过点,过点B作作1BB垂直于直线垂直于直线OA,垂足为垂足为 ,则,则1B 1OB|b|cos|b|cos叫向量叫向量 b 在在 a 方向上的投影方向上的投影
5、cosa bab平面向量的数量积的几何意义是平面向量的数量积的几何意义是:a 的长度的长度|a|与与 b 在在 a 的方向的方向 上的投影上的投影|b|cos 的乘积的乘积OABab 1BOABab)(1B为锐角时,为锐角时,|b|cos0为钝角时,为钝角时,|b|cos0为直角时,为直角时,|b|cos=0BOAab 1BOABbaOABba为为 时,它是时,它是|b|0。为为 时,它是时,它是-|b|180。练习三:练习三:1、已知 ,为单位向量,当它们的夹角为 时,求 在 方向上的投影及 ;8a e3aea eea、2、已知 ,与 的交角为 ,则2a 3b ab90oa b;m4、已知
6、,且 ,则 与 的夹角为 3m 4n 6m nn;3、若 ,共线,则1a 3b ab、a b.(1 1)e a=a e=|a|cos(2 2)ab a b=0 (判断两向量垂直的依据判断两向量垂直的依据)(3 3)当当a 与与b b 同向时,同向时,a b=|a|b|,当当a 与与b 反向反向时,时,a b=-|a|b|特别地特别地22a aaaa或 4cosa ba b403或或360o(a /b a b=|a|b|)平面向量数量积的性质:平面向量数量积的性质:(1 1)e a=a e=|a|cos(2 2)ab a b=0 (判断两向量垂直的依据判断两向量垂直的依据)(3 3)当当a 与与
7、b b 同向时,同向时,a b=|a|b|,当当a 与与b 反向反向时,时,a b=-|a|b|特别地特别地22a aaaa或 4cosa ba b(a /b a b=|a|b|)(5)a ba b例例2 ABC已知已知 中,中,CB=a,CA=b,a b0,5,3,5,2ADBCab为边上的高,且 ADab求 与 的夹角。ABCD解:解:设 与 的夹角为 ab1sin2ADADACb又0a bcos0a ba b为钝角则可作图如右:BCA即:为钝角150o练习四:练习四:(1)在四边形)在四边形ABCD中,中,AB BC=0,且,且AB=DC则四边形则四边形ABCD是(是()A 梯形梯形 B
展开阅读全文