书签 分享 收藏 举报 版权申诉 / 5
上传文档赚钱

类型二项式定理.版块七.二项式定理的应用4其他.学生版.doc

  • 上传人(卖家):和和062
  • 文档编号:352198
  • 上传时间:2020-03-11
  • 格式:DOC
  • 页数:5
  • 大小:503KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《二项式定理.版块七.二项式定理的应用4其他.学生版.doc》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    二项式 定理 版块 应用 利用 运用 其他 学生 下载 _一轮复习_高考专区_数学_高中
    资源描述:

    1、其他知识内容1二项式定理二项式定理这个公式表示的定理叫做二项式定理二项式系数、二项式的通项叫做的二项展开式,其中的系数叫做二项式系数,式中的叫做二项展开式的通项,用表示,即通项为展开式的第项: 二项式展开式的各项幂指数二项式的展开式项数为项,各项的幂指数状况是各项的次数都等于二项式的幂指数字母的按降幂排列,从第一项开始,次数由逐项减1直到零,字母按升幂排列,从第一项起,次数由零逐项增1直到几点注意通项是的展开式的第项,这里二项式的项和的展开式的第项是有区别的,应用二项式定理时,其中的和是不能随便交换的注意二项式系数()与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系数有时可为负通

    2、项公式是这个标准形式下而言的,如的二项展开式的通项公式是(只须把看成代入二项式定理)这与是不同的,在这里对应项的二项式系数是相等的都是,但项的系数一个是,一个是,可看出,二项式系数与项的系数是不同的概念设,则得公式: 通项是中含有五个元素,只要知道其中四个即可求第五个元素当不是很大,比较小时可以用展开式的前几项求的近似值2二项式系数的性质杨辉三角形:对于是较小的正整数时,可以直接写出各项系数而不去套用二项式定理,二项式系数也可以直接用杨辉三角计算杨辉三角有如下规律:“左、右两边斜行各数都是1其余各数都等于它肩上两个数字的和”二项式系数的性质:展开式的二项式系数是:,从函数的角度看可以看成是为自

    3、变量的函数,其定义域是:当时,的图象为下图:这样我们利用“杨辉三角”和时的图象的直观来帮助我们研究二项式系数的性质对称性:与首末两端“等距离”的两个二项式系数相等事实上,这一性质可直接由公式得到增减性与最大值如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大由于展开式各项的二项式系数顺次是,其中,后一个二项式系数的分子是前一个二项式系数的分子乘以逐次减小1的数(如),分母是乘以逐次增大的数(如1,2,3,)因为,一个自然数乘以一个大于1的数则变大,而乘以一个小于1的数则变小,从而当依次取1,2,3,等值时,的值转化为不递增而递减了又因

    4、为与首末两端“等距离”的两项的式系数相等,所以二项式系数增大到某一项时就逐渐减小,且二项式系数最大的项必在中间当是偶数时,是奇数,展开式共有项,所以展开式有中间一项,并且这一项的二项式系数最大,最大为当是奇数时,是偶数,展开式共有项,所以有中间两项这两项的二项式系数相等并且最大,最大为二项式系数的和为,即奇数项的二项式系数的和等于偶数项的二项式系数的和,即常见题型有:求展开式的某些特定项、项数、系数,二项式定理的逆用,赋值用,简单的组合数式问题典例分析【例1】 对于二项式,四位同学作出了四种判断:存在,展开式中有常数项;对任意,展开式中没有常数项;对任意,展开式中没有的一次项;存在,展开式中有的一次项上述判断中正确的是( )A B C D【例2】 由等式,定义映射,则等于( )A B C D【例3】 求证:【例4】 证明:【例5】 设,将的最小值记为,则,其中 5智康高中数学.板块七.二项式定理的应用4其他.题库

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:二项式定理.版块七.二项式定理的应用4其他.学生版.doc
    链接地址:https://www.163wenku.com/p-352198.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库