导数及其应用.板块一.导数的概念与几何意义.学生版.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《导数及其应用.板块一.导数的概念与几何意义.学生版.doc》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 及其 应用 利用 运用 板块 概念 几何 意义 学生 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、板块一.导数的概念 与几何意义知识内容1函数的平均变化率:一般地,已知函数,是其定义域内不同的两点,记,则当时,商称作函数在区间(或)的平均变化率注:这里,可为正值,也可为负值但,可以为2函数的瞬时变化率、函数的导数:设函数在附近有定义,当自变量在附近改变量为时,函数值相应的改变如果当趋近于时,平均变化率趋近于一个常数(也就是说平均变化率与某个常数的差的绝对值越来越小,可以小于任意小的正数),那么常数称为函数在点的瞬时变化率“当趋近于零时,趋近于常数”可以用符号“”记作:“当时,”,或记作“”,符号“”读作“趋近于”函数在的瞬时变化率,通常称为在处的导数,并记作这时又称在处是可导的于是上述变化
2、过程,可以记作“当时,”或“”3可导与导函数:如果在开区间内每一点都是可导的,则称在区间可导这样,对开区间 内每个值,都对应一个确定的导数于是,在区间内,构成一个新的函数,我们把这个函数称为函数的导函数记为或(或)导函数通常简称为导数如果不特别指明求某一点的导数,那么求导数指的就是求导函数4导数的几何意义:设函数的图象如图所示为过点与的一条割线由此割线的斜率是,可知曲线割线的斜率就是函数的平均变化率当点沿曲线趋近于点时,割线绕点转动,它的最终位置为直线,这条直线叫做此曲线过点的切线,即切线的斜率由导数意义可知,曲线过点的切线的斜率等于典例分析题型一:极限与导数【例1】 正三棱锥相邻两侧面所成的
3、角为,则的取值范围是( )A B C D【例2】 在正棱锥中,相邻两侧面所成的二面角的取值范围是( )A B C D【例3】 对于任意都有( )A BC D【例4】 若,则_【例5】 若,则_【例6】 设在可导,则等于( )A B C D【例7】 若,则等于( )A B C D【例8】 设在处可导,为非零常数,则( )A B C D【例9】 设,则( )ABCD【例10】 若,则当无限趋近于时,_【例11】 已知函数,则的值为 【例12】 已知,则的值是( )A B C D【例13】 若,则_【例14】 已知函数在处可导,则( )A B C D【例15】 计算_【例16】 _【例17】 将直线
4、、(,)轴、轴围成的封闭图形的面积记为,则 【例18】 ( )ABCD不存在【例19】 如图,在半径为的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去设为前个圆的面积之和,则( )A B C D【例20】 _【例21】 若,则常数_【例22】 _【例23】 _【例24】 _【例25】 _【例26】 ( )ABCD【例27】 【例28】 设函数,其中,已知对一切,有和,求证:【例29】 如图,函数的图象是折线段,其中的坐标分别为,则 ;函数在处的导数 【例30】 如图,函数的图象是折线段,其中的坐标分别为,则 ; (用数字作答)【例31】 下列哪个图象表
5、示的函数在点处是可导的( )【例32】 函数在闭区间内的平均变化率为( )A B C D【例33】 求函数在到之间的平均变化率【例34】 若函数,则当时,函数的瞬时变化率为( )A1 B C2 D【例35】 求函数在附近的平均变化率,在处的瞬时变化率与导数【例36】 求函数在附近的平均变化率,在处的瞬时变化率与导数【例37】 已知某物体的运动方程是,则当s时的瞬时速度是_【例38】 已知某物体的运动方程是,则时的瞬时速度是_【例39】 已知物体的运动方程是,则物体在时刻时的速度_,加速度 【例40】 物体运动方程为,则时瞬时速度为( )A2B4C6D8【例41】 一质点做直线运动,由始点起经过
6、s后的距离为,则速度为零的时刻是( )A4s末 B8s末 C0s与8s末 D0s,4s,8s末【例42】 如果某物体做运动方程为的直线运动(的单位为m,的单位为s),那么其在s末的瞬时速度为( )Am/s Bm/s Cm/s Dm/s【例43】 求在处的导数题型二:导数的几何意义【例44】 已知曲线上一点,用斜率定义求: 过点的切线的斜率; 过点的切线方程【例45】 已知曲线上一点,用斜率定义求:过点A的切线的斜率;过点A的切线方程【例46】 函数的图象如图所示,下列数值排序正确的是( )A BC D【例47】 求函数的图象上过点的切线方程【例48】 曲线在点处的切线方程是( )ABCD【例4
7、9】 求曲线在点的切线方程,与过点的切线的方程【例50】 函数在点处的切线方程为( )A B C D【例51】 已知曲线的一条切线的斜率为,则切点的横坐标为_【例52】 曲线在点处的切线的倾斜角为( )ABCD【例53】 过点作曲线的切线,则切线方程为_【例54】 曲线在点处的切线方程为_ 【例55】 若曲线与在处的切线互相垂直,则等于( )A B C D或【例56】 设曲线在点处的切线与直线垂直,则( )A2BCD【例57】 设曲线在点处的切线与直线平行,则( )A B C D【例58】 若曲线的一条切线与直线平行,则的方程为_【例59】 若曲线的一条切线与直线垂直,则的方程为( )A B
展开阅读全文