二项与Poisson三种分配之间的关系课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《二项与Poisson三种分配之间的关系课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Poisson 分配 之间 关系 课件
- 资源描述:
-
1、Copyright 2015 McGraw-Hill Education.All rights reserved.No reproduction or distribution without the prior written consent of McGraw-Hill Education.Continuous Probability DistributionsChapter 77-*Learning ObjectivesnLO7-1 Describe the uniform probability distribution and use it to calculate probabil
2、ities.nLO7-2 Describe the characteristics of a normal probability distribution.nLO7-3 Describe the standard normal probability distribution and use it to calculate probabilities.nLO7-4 Approximate the binomial probability distribution using the standard normal probability distribution to calculate p
3、robabilities.nLO7-5 Describe the exponential probability distribution and use it to calculate probabilities.7-*均等分配 The Uniform Distribution均等分配是最簡單的連續隨機變數分配。The uniform probability distribution is perhaps the simplest distribution for a continuous random variable.此分配為方形分配,由最大值與最小值定義其範圍,此方形的面積1(亦即:機
4、率總和為1)This distribution is rectangular in shape and is defined by minimum(a)and maximum(b)values.LO7-1 Describe the uniform probability distribution and use it to calculate probabilities.7-*The Uniform Distribution Mean and Standard DeviationLO7-1在均等分配中,若知道最大值與最小值,我們就能定義均等分配的機率函數(可據此求機率),也能根據此函數求得平均
5、數、變異數、標準差。Knowing the minimum and maximum values of a uniform distribution,we can define the probability function,and calculate the mean,variance,and standard deviation of the distribution.7-*The Uniform Distribution Example(p.208)西南亞利桑納州立大學提供通勤公車,週一至週五從早上6點到晚上11點,每半小時一班公車(由北主街到校園),學生等公車的時間從0分至30分呈均
6、等分配。Southwest Arizona State University provides bus service to students.On weekdays,a bus arrives at the North Main Street and College Drive stop every 30 minutes between 6 a.m.and 11 p.m.Students arrive at the bus stop at random times.The time that a student waits is uniformly distributed from 0 to
7、 30 minutes.1.請繪製此分配的圖形 2.請說明其總面積為13.學生等公車一般要等多久?換句話說,平均等候時間為?等候時間的標準差為?4.學生等公車超過25分鐘的機率?5.學生等公車介於10到20分鐘的機率?1.Draw a graph of this distribution.2.Show that the area of this uniform distribution is 1.00.3.How long will a student“typically”have to wait for a bus?In other words what is the mean waitin
8、g time?What is the standard deviation of the waiting times?4.What is the probability a student will wait more than 25 minutes?5.What is the probability a student will wait between 10 and 20 minutes?LO7-17-*The Uniform Distribution Example(p.209)1.Graph of uniformly distributed waiting times between
9、0 and 30:P(X)=1/(30-0)=0.0333LO7-17-*The Uniform Distribution Example(p.209)2.Show that the area of this distribution is 1.00.LO7-17-*The Uniform Distribution Example(p.209)3.How long will a student“typically”have to wait for a bus?In other words what is the mean waiting time?What is the standard de
10、viation of the waiting times?LO7-17-*The Uniform Distribution Example(p.209-210)4.What is the probability a student will wait more than 25 minutes?計算介於25到30間的面積等候時間大於25分鐘的機率LO7-17-*The Uniform Distribution Example(p.210)5.What is the probability a student will wait between 10 and 20 minutes?計算介於10到2
11、0分鐘之間的面積其機率LO7-1Self-review 7-1(p.210)澳洲的牧羊犬壽命相對較短,他們的壽命介於8到14歲之間,且呈現均等分配。問:(a).請繪製此均等分配的圖形(b).說明此分配的面積為1(c).計算其平均值、標準差(d).某隻牧羊犬壽命介於10到14歲之機率?(e).牧羊犬壽命低於9歲的機率?(f).牧羊犬壽命正好等於9歲的機率?What is the probability a dog will live exactly 9 years?Self-review 7-1(p.210)(a)a=8,b=14縱軸截距(機率):1/(b-a)=1/(14-8)=0.167(b
12、)1/(14-8)*(14-8)=1(c)mean=(a+b)/2=(14+8)/2=11 s.d.=(14-8)2/12=1.732(d)P(10X14)=1/(14-8)*(14-10)=0.667(e)P(X20且且np7時,可用時,可用Poisson分配取代二項分配分配取代二項分配 超幾何、二項與超幾何、二項與Poisson三種分配之間的關係三種分配之間的關係Normal Approximation to the Binomial(p.226)l當二項分配中的觀察點數目很大時,計算其隨機變量對應的機率,非常繁瑣!e.g.如果n=60,求 P(x=33)=60C33()33(1-)27
13、l但二項分配的觀察點數很大時,其分配趨近常態分配 觀察點數目要多大?n 5 and n(1-)57-*Normal Approximation to the Binomial The normal distribution(a continuous distribution)yields a good approximation of the binomial distribution(a discrete distribution)for large values of n.The normal probability distribution is generally a good app
14、roximation to the binomial probability distribution when n and n(1-)are both greater than 5.LO7-4 Approximate the binomial probability distribution using the standard normal probability distribution to calculate probabilities.7-*Normal Approximation to the BinomialUsing the normal distribution(a con
15、tinuous distribution)as a substitute for a binomial distribution(a discrete distribution)for large values of n seems reasonable because,as n increases,a binomial distribution gets closer and closer to a normal distribution.LO7-4Continuity Correction Factor(p.228)由於二項分配是間斷機率分配,常態分配是連續機率分配,若以常態分配來代替二項
展开阅读全文