书签 分享 收藏 举报 版权申诉 / 20
上传文档赚钱

类型线性代数第一章第七节《克拉默法则》课件.ppt

  • 上传人(卖家):宜品文库
  • 文档编号:3499204
  • 上传时间:2022-09-07
  • 格式:PPT
  • 页数:20
  • 大小:1.47MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《线性代数第一章第七节《克拉默法则》课件.ppt》由用户(宜品文库)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    克拉默法则 线性代数 第一章 第七 克拉 法则 课件
    资源描述:

    1、 nnnnnnnnnnbxaxaxabxaxaxabxaxaxa22112222212111212111设线性方程组设线性方程组,21不全为零不全为零若常数项若常数项nbbb则称此方程组为则称此方程组为非非 齐次线性方程组齐次线性方程组;,21全为零全为零若常数项若常数项nbbb此时称方程组为此时称方程组为齐次线性方程组齐次线性方程组.非齐次与齐次线性方程组的概念非齐次与齐次线性方程组的概念 一、克拉默法则一、克拉默法则如果线性方程组如果线性方程组)1(22112222212111212111 nnnnnnnnnnbxaxaxabxaxaxabxaxaxa的系数行列式不等于零,即的系数行列式不

    2、等于零,即nnnnnnaaaaaaaaaD212222111211 0.DDx,DDx,DDx,DDxnn 232211其中其中 是把系数行列式是把系数行列式 中第中第 列的元素用方程列的元素用方程组右端的常数项代替后所得到的组右端的常数项代替后所得到的 阶行列式,即阶行列式,即jDDjnnnj,nnj,nnnj,j,jaabaaaabaaD11111111111 那么线性方程组那么线性方程组 有解,并且解是唯一的,解有解,并且解是唯一的,解可以表为可以表为 1证明证明 njnnjnnnnnjjnnjjnnAbAxaxaxaAbAxaxaxaAbAxaxaxa22112222222121111

    3、1212111 得得个个方方程程的的依依次次乘乘方方程程组组列列元元素素的的代代数数余余子子式式中中第第用用,1,21nAAAjDnjjj在把在把 个方程依次相加,得个方程依次相加,得n,111111 nkkjknnkkjknjnkkjkjnkkjkAbxAaxAaxAa由代数余子式的性质可知由代数余子式的性质可知,.,2,1njDDxjj .DDx,DDx,DDx,DDxnn 232211,Dxj的系数等于的系数等于上式中上式中 ;0的系数均为的系数均为而其余而其余jixi.jD又等式右端为又等式右端为于是于是 2当当 时时,方程组方程组 有唯一的一个解有唯一的一个解0 D 2由于方程组由于

    4、方程组 与方程组与方程组 等价等价,2 1故故.DDx,DDx,DDx,DDxnn 232211也是方程组的也是方程组的 解解.1二、重要定理二、重要定理定理定理1 1 如果线性方程组如果线性方程组 的系数行列式的系数行列式 则则 一定有解一定有解,且解是唯一的且解是唯一的 .1 1,0 D定理定理2 2 如果线性方程组如果线性方程组 无解或有两个不同的无解或有两个不同的解,则它的系数行列式必为零解,则它的系数行列式必为零.1齐次线性方程组的相关定理齐次线性方程组的相关定理 2000221122221211212111 nnnnnnnnnxaxaxaxaxaxaxaxaxa定理定理 如果齐次线

    5、性方程组如果齐次线性方程组 的系数行列式的系数行列式 则齐次线性方程组则齐次线性方程组 没有非零解没有非零解.0 D 2 2定理定理 如果齐次线性方程组如果齐次线性方程组 2有非零解有非零解,则它则它的系数行列式必为零的系数行列式必为零.000221122221211212111nnnnnnnnnxaxaxaxaxaxaxaxaxa有非零解有非零解.系数行列式系数行列式0 D例例1 用克拉默则解方程组用克拉默则解方程组 .0674,522,963,85243214324214321xxxxxxxxxxxxxx解解6741212060311512 D212rr 24rr 127702120603

    6、113570 12772121357 212cc 232cc 277010353 2733 ,27 67402125603915181 D,81 67012150609115822 D,108 60412520693118123 D,27 07415120903185124 D,27,3278111 DDx,42710822 DDx,1272733 DDx.1272744 DDx例例2 2 用克拉默法则解方程组用克拉默法则解方程组 .6523,611,443,325343214321424321xxxxxxxxxxxxxx解解2311111140301253 D67,0 23165111611

    7、403412531 D,367 23651116111404012332 D,0 26511161111443013533 D,267 65311611111403032534 D,67,DDx316736711 ,DDx067022 ,DDx216726733 .1676744 DDx例例3 问问 取何值时,齐次方程组取何值时,齐次方程组 ,01,032,0421321321321xxxxxxxxx 有非零解?有非零解?解解 111132421D 101112431 31214313 312123 齐次方程组有非零解,则齐次方程组有非零解,则0 D所以所以 或或 时齐次方程组有非零解时齐次方

    8、程组有非零解.20 ,3 1.1.用克拉默法则解方程组的两个条件用克拉默法则解方程组的两个条件(1)(1)方程个数等于未知量个数方程个数等于未知量个数;(2)(2)系数行列式不等于零系数行列式不等于零.2.2.克拉默法则建立了线性方程组的解和已知的系克拉默法则建立了线性方程组的解和已知的系数与常数项之间的关系数与常数项之间的关系.它主要适用于理论推导它主要适用于理论推导.三、小结三、小结思考题思考题当线性方程组的系数行列式为零时当线性方程组的系数行列式为零时,能否用克拉默能否用克拉默法则解方程组法则解方程组?为什么为什么?此时方程组的解为何此时方程组的解为何?思考题解答思考题解答不能不能,此时方程组的解为无解或有无穷多解此时方程组的解为无解或有无穷多解.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:线性代数第一章第七节《克拉默法则》课件.ppt
    链接地址:https://www.163wenku.com/p-3499204.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库