线性代数第二章第三节《逆矩阵》课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《线性代数第二章第三节《逆矩阵》课件.ppt》由用户(宜品文库)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 逆矩阵 线性代数 第二 三节 矩阵 课件
- 资源描述:
-
1、,111 aaaa,11EAAAA 则矩阵则矩阵 称为称为 的可逆矩阵或逆阵的可逆矩阵或逆阵.A1 A在数的运算中,在数的运算中,当数当数 时,时,0 a有有aa11 a其中其中 为为 的倒数,的倒数,a(或称(或称 的逆);的逆);在矩阵的运算中,在矩阵的运算中,E单位阵单位阵 相当于数的乘法运算中相当于数的乘法运算中 的的1,A那么,对于矩阵那么,对于矩阵 ,1 A如果存在一个矩阵如果存在一个矩阵 ,使得使得 定义定义 对于对于 阶矩阵阶矩阵 ,如果有一个,如果有一个 阶矩阵阶矩阵 则说矩阵则说矩阵 是是可逆可逆的,并把矩阵的,并把矩阵 称为称为 的的逆矩阵逆矩阵.nAB,EBAAB BA
2、nA,使得使得.1 AA的逆矩阵记作的逆矩阵记作例例 设设,21212121,1111 BA,EBAAB .的一个逆矩阵的一个逆矩阵是是AB说明说明 若若 是可逆矩阵,则是可逆矩阵,则 的逆矩阵是的逆矩阵是唯一唯一的的.AA若设若设 和和 是是 的可逆矩阵,的可逆矩阵,BCA则有则有,ECAACEBAAB 可得可得EBB BCA ABC.CCE 所以所以 的逆矩阵是唯一的的逆矩阵是唯一的,即即A.1 ACB例例 设设,0112 A.的逆阵的逆阵求求A解解设设 是是 的逆矩阵的逆矩阵,dcbaBA则则 dcbaAB0112 1001 100122badbca利用待定系数法利用待定系数法 ,1,0
3、,02,12badbca .2,1,1,0dcba又因为又因为 0112 2110 0112 2110,1001 所以所以.21101 AABAB定理定理1 1 矩阵矩阵 可逆的充要条件是可逆的充要条件是 ,且,且 ,11 AAAA0 A证明证明若若 可逆,可逆,A.EAAA 11使使即有即有,11 EAA故故.0 A所所以以.的伴随矩阵的伴随矩阵为矩阵为矩阵其中其中AA,0时时当当 A,0时时当当 A nnnnnnnnnnnnAAAAAAAAAaaaaaaaaaAA212221212111212222111211AAaAaAann 1112121111AAaAaAannnnnnnn 2211
4、,AAAAOOEAAAAA ,EAAAAAA .1AAA 按逆矩阵的定义得按逆矩阵的定义得证毕证毕.,0,0非非奇奇异异矩矩阵阵称称为为时时当当称称为为奇奇异异矩矩阵阵时时当当AAAA 奇异矩阵与非奇异矩阵的定义奇异矩阵与非奇异矩阵的定义.为为非非奇奇异异矩矩阵阵是是可可逆逆阵阵的的充充要要条条件件是是由由此此可可得得AA,1 EBA,0 A故故,1存存在在因因而而 A于是于是EBB BAA1 ABA1 EA1 .1 A证毕证毕 .,1 ABEBAEAB则则或或若若推论推论证明证明 .,1111AAAA 且且亦可逆亦可逆则则可逆可逆若若逆矩阵的运算性质逆矩阵的运算性质 且且可逆可逆则则数数可逆
5、可逆若若,0,2AA 且且亦可逆亦可逆则则为同阶方阵且均可逆为同阶方阵且均可逆若若,3ABBA 1111 ABBAABAB1 AEA,1EAA .111 ABAB证明证明 1ABB1 1 A .111 AA TTTAAAA11 TE,E .11TTAA .,0,10kkAAEAA 定义定义时时当当另外另外证明证明 为正整数为正整数k .1212 AA推推广广1AmA1 mA1 1A .,4AAAAT 且且亦可逆亦可逆则则可逆可逆若若TT1 1 .AA,A115 则有则有可逆可逆若若证明证明EAA 111 AA.AA11 因此因此有有为整数时为整数时当当,0 A,AAA .AA 例例1 1 求方
展开阅读全文