线性代数第二章第二节《矩阵的运算》课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《线性代数第二章第二节《矩阵的运算》课件.ppt》由用户(宜品文库)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 矩阵的运算 线性代数 第二 矩阵 运算 课件
- 资源描述:
-
1、、定义、定义 mnmnmmmmnnnnbababababababababaBA221122222221211112121111设有两个设有两个 矩阵矩阵 那末矩阵那末矩阵 与与 的和记作的和记作 ,规定为,规定为nm ,bB,aAijij ABBA 说明说明 只有当两个矩阵是同型矩阵时,才能进只有当两个矩阵是同型矩阵时,才能进行加法运算行加法运算.例如例如 1234569818630915312 1826334059619583112.98644741113 2 2、矩阵加法的运算规律矩阵加法的运算规律 ;1ABBA .2CBACBA mnmmnnaaaaaaaaaA1122221112113
2、 .,04BABAAA ,ija .负矩阵负矩阵的的称为矩阵称为矩阵A1 1、定义、定义.112222111211 mnmmnnaaaaaaaaaAA 规定为规定为或或的乘积记作的乘积记作与矩阵与矩阵数数,AAA ;1AA ;2AAA .3BABA 2 2、数乘矩阵的运算规律、数乘矩阵的运算规律矩阵相加与数乘矩阵合起来矩阵相加与数乘矩阵合起来,统称为矩阵的统称为矩阵的线线性运算性运算.(设(设 为为 矩阵,矩阵,为数)为数),nm BA、定义、定义 skkjiksjisjijiijbabababac12211 ,2,1;,2,1njmi 并把此乘积记作并把此乘积记作.ABC 设设 是一个是一个
3、 矩阵,矩阵,是一个是一个 矩阵,那末规定矩阵矩阵,那末规定矩阵 与矩阵与矩阵 的乘积的乘积是一个是一个 矩阵矩阵 ,其中,其中 ijaA sm ijbB ns nm ijcC AB例例222263422142 C22 16 32 816设设 415003112101A 121113121430B例例2 2?故故 121113121430415003112101ABC.解解 ,43 ijaA ,34 ijbB .33 ijcC5 671026 2 17 10注意注意只有当第一个矩阵的列数等于第二个矩阵只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘的行数时,两个矩阵才能相乘.10
4、6861985123321例如例如 123321 132231 .10 不存在不存在.、矩阵乘法的运算规律、矩阵乘法的运算规律 ;1BCACAB ,2ACABCBA ;CABAACB BABAAB 3(其中(其中 为数)为数);4AEAAE 若若A是是 阶矩阵,则阶矩阵,则 为为A的的 次幂,即次幂,即 并且并且 5nkAk 个个kkAAAA ,AAAkmkm .mkkmAA 为为正正整整数数k,m注意注意矩阵不满足交换律,即:矩阵不满足交换律,即:,BAAB .BAABkkk 例例 设设 1111A 1111B则则,0000 AB,2222 BA.BAAB 故故但也有例外,比如设但也有例外,
5、比如设,2002 A,1111 B则有则有,AB22 2 2 BA22 2 2.BAAB 例例3 3 计算下列乘积:计算下列乘积:21322 1 解解 213221 12 22 12 22 13 23.634242 3213332312322211312113212bbbaaaaaaaaabbb 解解332222112bababa 321bbb.222322331132112233322222111bbabbabbabababa 321333231232221131211321bbbaaaaaaaaabbb331221111bababa =333223113bababa 解解 00100100
展开阅读全文