高等数学第五章第一节《定积分的概念及性质》课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高等数学第五章第一节《定积分的概念及性质》课件.ppt》由用户(宜品文库)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 定积分的概念及性质 高等数学 第五 第一节 积分 概念 性质 课件
- 资源描述:
-
1、第五章积分学积分学不定积分不定积分定积分定积分定积分 第一节一、一、定积分问题举例定积分问题举例二、二、定积分的定义定积分的定义三、三、定积分的性质定积分的性质定积分的概念及性质 第五五章 一、定积分问题举例一、定积分问题举例1.曲边梯形的面积曲边梯形的面积设曲边梯形是由连续曲线)0)()(xfxfy,轴及x以及两直线bxax,所围成,求其面积 A.?A)(xfy 矩形面积ahhaahb梯形面积)(2bah1xix1ixxabyo解决步骤解决步骤:1)大化小大化小.在区间 a,b 中任意插入 n 1 个分点bxxxxxann1210,1iiixx用直线ixx 将曲边梯形分成 n 个小曲边梯形;
2、2)常代变常代变.在第i 个窄曲边梯形上任取作以,1iixx为底,)(if为高的小矩形,并以此小梯形面积近似代替相应窄曲边梯形面积,iA得)()(1iiiiiixxxxfA),2,1,nii3)近似和近似和.niiAA1niiixf1)(4)取极限取极限.令,max1inix则曲边梯形面积niiAA10limniiixf10)(limxabyo1xix1ixi2.变速直线运动的路程变速直线运动的路程设某物体作直线运动,)(21TTCtvv且,0)(tv求在运动时间内物体所经过的路程 s.解决步骤解决步骤:1)大化小大化小.,1iiitt任取将它分成,),2,1(,1nittii在每个小段上物体
3、经2)常代变常代变.,)(代替变速以iv得iiitvs)(,1,21个分点中任意插入在nTT),2,1(nisi),2,1(ni已知速度n 个小段过的路程为3)近似和近似和.iniitvs1)(4)取极限取极限.iniitvs10)(lim)max(1init上述两个问题的共性共性:解决问题的方法步骤相同:“大化小,常代变,近似和,取极限”所求量极限结构式相同:特殊乘积和式的极限abxo二、定积分定义二、定积分定义,)(上定义在设函数baxf的若对,ba任一种分法,210bxxxxan,1iiixxx令任取,1iiixxi时只要0max1inixiniixf1)(总趋于确定的极限 I,则称此极
4、限 I 为函数)(xf在区间,ba上的定积分定积分,1xix1ixbaxxfd)(即baxxfd)(iniixf10)(lim此时称 f(x)在 a,b 上可积可积.记作baxxfd)(iniixf10)(lim积分上限积分下限被积函数被积表达式积分变量积分和称为积分区间,ba定积分仅与被积函数及积分区间有关,而与积分变量用什么字母表示无关,即baxxfd)(battfd)(bauufd)(定积分的几何意义定积分的几何意义:Axxfxfbad)(,0)(曲边梯形面积baxxfxfd)(,0)(曲边梯形面积的负值abyx1A2A3A4A5A54321d)(AAAAAxxfba各部分面积的代数和A
5、o1 xyni定理定理1.上连续在函数,)(baxf.,)(可积在baxf定理定理2.,)(上有界在函数baxf且只有有限个间断点 可积的充分条件可积的充分条件:例例1.利用定义计算定积分.d102xx解解:将 0,1 n 等分,分点为niix),1,0(ninix1,nii取),2,1(ni.,)(可积在baxf2xy iiiixxf2)(则32nio1 xyniiinixf)(1niin1231)12)(1(6113nnnn)12)(11(61nniniixxx120102limdnlim31)12)(11(61nn2xy 注注注注 利用,133)1(233nnnn得133)1(233nn
展开阅读全文