书签 分享 收藏 举报 版权申诉 / 68
上传文档赚钱

类型数字图象处理-Chapter9-形态学图像处理 课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:3497812
  • 上传时间:2022-09-07
  • 格式:PPT
  • 页数:68
  • 大小:3.55MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《数字图象处理-Chapter9-形态学图像处理 课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数字图象处理-Chapter9-形态学图像处理 课件 数字图象处理 Chapter9 形态学 图像 处理
    资源描述:

    1、Digital Image ProcessingChapter 9Morphological Image Processing2019.10Morphological operations come from the word“morphing”in Biology which means“changing a shape”.MorphingImage morphological operations are used to manipulateobject shapes such as thinning,thickening,and filling.Binary morphological

    2、operations are derived fromset operations.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Concept of a set in binary image morphology:Each set may represent one object.Each pixel(x,y)has its status:belong to a set or not belong to a set.A(A)zz=(z1,z2)Translatio

    3、nReflectionBBBbbwwBfor ,AazaccAzfor ,(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.*For binary images only(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.ABzBAz=Empty setA=Object to be dilatedB=Structuring elementDilate

    4、means“extend”StructuringElement(B)Original image(A)BReflectionIntersect pixelCenter pixelResult of DilationBoundary of the“center pixels”where intersects A zB(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.“Repair”broken characters(Images from Rafael C.Gonzalez

    5、 and Richard E.Wood,Digital Image Processing,2nd Edition.ABzBAz A=Object to be erodedB=Structuring elementErosion means“trim”StructuringElement(B)Original image(A)Intersect pixelCenter pixelResult of ErosionBoundary of the“center pixels”where B is inside A(Images from Rafael C.Gonzalez and Richard E

    6、.Wood,Digital Image Processing,2nd Edition.Remove small objects such as noiseBABAcc)(Proof:where c=complement BAABzABzABzBAcczcczczc )(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.BBABA)(ABBBAzzor=Combination of all parts of A that can completely contain B Op

    7、ening eliminates narrow and small details and corners.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.BBBA )A(Closing fills narrow gaps and notches(Images from Rafael C.Gonza

    8、lez and Richard E.Wood,Digital Image Processing,2nd Edition.BABAccBABBABDBCDCABA .3 then If 2.1BABBABDBCDCBAA .3 then If 2.1Idem potent property:cant change any more(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Finger print enhancement(Images from Rafael C.Go

    9、nzalez and Richard E.Wood,Digital Image Processing,2nd Edition.BAA(A)Original imageBoundary(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.ckkABXX1Original imageResults of region fillingwhere X0=seed pixel p(Images from Rafael C.Gonzalez and Richard E.Wood,Digi

    10、tal Image Processing,2nd Edition.ABXXkk1where X0=seed pixel pX-ray imageof bonesThresholdedimageConnectedcomponents(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Brief Description General binary morphological operation that can be used to look for particular p

    11、atterns in an image.A tool for shape detection Basic operation for binary morphology Almost all the other binary morphological operators can be derived from Hit-and-Miss Transform.Common names:How It Works The structuring element used in the hit-and-miss can contain both foreground and background pi

    12、xels.Operations If the foreground and background pixels in the structuring element exactly match foreground and background pixels in the image,then the pixel underneath the origin of the structuring element is set to the foreground color.If it doesnt match,then that pixel is set to the background co

    13、lor.Effect of the hit-and-miss based right angle convex corner detector After obtaining the locations of corners in each orientation,we can then simply OR all these images together to get the final result.Four structuring elements used for corner finding in binary images Guidelines for Use The hit-a

    14、nd-miss transform is used to look for occurrences of particular binary patterns.It can be used to look for several patterns.Simply by running successive transforms using different structuring elements,and then ORing the results together.The operations of erosion,dilation,opening,closing,thinning and

    15、 thickening can all be derived from the hit-and-miss transform in conjunction with simple set operations.Some structuring elements that can be used for locating various binary features 1)is used to locate isolated points in a binary image.2)is used to locate the end points on a binary skeleton.Note

    16、that this structuring element must be used in all its orientations,and thus the four hit-and-miss passes are required.3a)and 3b)are used to locate the triple points on a skeleton.Both structuring elements must be run in all orientations so eight hit-and-miss passes are required.Some applications of

    17、the hit-and-miss transform The triple points(points where three lines meet)of the skeleton The hit-and-miss transform outputs single foreground pixels at each triple point by structuring elements 3a)and 3b).This image was dilated once using a cross-shaped structuring element in order to mark these i

    18、solated points clearly,and this was then ORed with the original skeleton.The end points of the skeleton The hit-and-miss transform outputs single foreground pixels at each end point by structuring element 2).This image was dilated once using a square-shaped structuring element,and this was then ORed

    19、 with the original skeleton.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.)(XWAXAXAc*where X=shape to be detected W=window that can contain X)(XWABABAc*(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Images from Rafael

    20、C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.iiDAC41)(4,3,2,1 ,1iABXXikik*iconviXD Convex hull has no concave part.Convex hullAlgorithm:where(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Images from Rafael C.Gonzalez and Richard E.Wood,

    21、Digital Image Processing,2nd Edition.cBAABAABA)()(*).)(.(21nBBBABA(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Make an object thinner.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.*)(BAABA.).)(.(21nBBBABA.Make an obje

    22、ct thicker*(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Dot lines are skeletons of thisstructure)()(0ASASkKkwithwhere .)(.(BBBAkB)ABkB)AkB)AASk ()(k timesandkBAkK max(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Imag

    23、es from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.BAX1AHXX)(23)(1812kkBXX*314XXX=thinning=finding end points=dilation at end points=Pruned resultOriginal imagePruned resultAfter Thinning3 timesEnd pointsDilationof end points(Tables from Rafael C.Gonzalez and Richard E

    24、.Wood,Digital Image Processing,2nd Edition.(Tables from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Tables from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Tables from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edit

    25、ion.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.x=dont care(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.bfDyxDytxsyxbytxsfbf),(;)(),(|),(),(maxbfDxDxsxbxsfbf and )(|)()(max2-D Case1-D CaseSubimageOriginal imageMovin

    26、g windowMaxOutput image+Reflectionof BStructuring element BNote:B can be any shape and subimage must have the same shape as reflection of B.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.bfDyxDytxsyxbytxsfbf),(;)(),(|),(),(min2-D Case1-D CasebfDxDxsxbxsfbf and

    27、 )(|)()(minSubimageOriginal imageMoving windowMinOutput image-BStructuring element BNote:B can be any shape and subimage must have the same shape as B.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Original imageAfter dilationAfter erosionDarkerBrighter(Images

    28、 from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.bbfbf)(Opening cuts peaks(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.bbfbf)(Closing fills valleys(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd E

    29、dition.Original imageAfter closingAfter openingReduce whiteobjectsReduce darkobjects(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Smoothing:Perform opening followed by closingOriginal imageAfter smoothing(Images from Rafael C.Gonzalez and Richard E.Wood,Digit

    30、al Image Processing,2nd Edition.Original imageMorphological Gradient)()(bfbfg(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.Original imageResults of top-hat transform)(bffh(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.A

    31、lgorithm:1.Perform closing on the image by using successively larger structuring elements until small blobs are vanished.2.Perform opening to join large blobs together3.Perform intensity thresholdingOriginal imageSegmented resultSmall blobLarge blob(Images from Rafael C.Gonzalez and Richard E.Wood,D

    32、igital Image Processing,2nd Edition.Objective:to count the number of particles of each sizeMethod:1.Perform opening using structuring elements of increasing size2.Compute the difference between the original image and the result after each opening operation3.The differenced image obtained in Step 2 a

    33、re normalized and used to construct the size-distribution graph.Original imageSize distribution graph(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Images from Rafael C.Gon

    34、zalez and Richard E.Wood,Digital Image Processing,2nd Edition.Surface of P at edges looklike mountain ridges.POriginalimageP(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.(Images from Rafael C.Gonzalez and Richard E.Wood,Digital Image Processing,2nd Edition.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:数字图象处理-Chapter9-形态学图像处理 课件.ppt
    链接地址:https://www.163wenku.com/p-3497812.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库