书签 分享 收藏 举报 版权申诉 / 32
上传文档赚钱

类型应用数学第二章-不-等-式课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:3497744
  • 上传时间:2022-09-07
  • 格式:PPT
  • 页数:32
  • 大小:663KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《应用数学第二章-不-等-式课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    应用 数学 第二 课件
    资源描述:

    1、应用数学 主编:河南机电学校基础部第二章不等式第一节不等式的性质图2-1一、比较实数大小的方法一、比较实数大小的方法如何比较实数的大小呢?我们知道,实数与数轴上的点之间可以建立一一对应关系.如图2-1 所示,图2-1点A与数3对应,点B与数-2对应,有3-(-2)=50,所以3-2.可以看到当数轴上一动点P从左向右移动时,它对应的实数就从小到大变化.这就是说,数轴上的任意两点中数轴上的任意两点中,右边的点对应的实右边的点对应的实数比左边的点对应的实数大数比左边的点对应的实数大.一般地,对于实数a,b如果a-b0,那么称a大于b(或b小于a),记作ab(或ba);如果a-b0,那么称a小于b(或

    2、b大于a),记作aa).所以,对于任意实数a,b,有aba-b0a=ba-b=0aba-b4且43,则53,如果54则5+34+3.一般地,不等式有如下性质:性质性质1(1(传递性传递性)如果如果abab且且bc,bc,则则ac.ac.证明证明aba-b0;bcb-c0.于是a-c=(a-b)+(b-c)0所以ac.第一节不等式的性质性质性质2(2(可加性可加性)如果ab且cR,则a+cb+c.证明aba-b0于是(a+c)-(b+c)=a-b0所以a+cb+c.性质2表明,不等式两边加上不等式两边加上(或减去或减去)同一个实数同一个实数,不等号的不等号的方向不变方向不变.第一节不等式的性质例

    3、3表明,对不等式可以移项,即把它的任何一项改变符号移项,即把它的任何一项改变符号后移到不等号的另一边后移到不等号的另一边.第一节不等式的性质例4表明,两个同向不等式的两边分别相加,所得不等式与两个同向不等式的两边分别相加,所得不等式与原不等式同向原不等式同向.第一节不等式的性质性质性质3 3(可乘性)如果ab,且c0,则acbc;如果ab,且c0,则acba-b0,于是当c0时,有ac-bc=(a-b)c0acbc而当c0时,有ac-bc=(a-b)c0acbc.性质3表明,不等式两边乘以同一个正数不等式两边乘以同一个正数,不等号的方不等号的方向不变;而乘以同一个负数向不变;而乘以同一个负数,

    4、不等号的方向改变不等号的方向改变.第一节不等式的性质例5表明,两个两边都是正数的不等式的两边分别相乘,两个两边都是正数的不等式的两边分别相乘,所得不等式与原不等式同向所得不等式与原不等式同向.例3、例4、例5是三个性质的三个推论,在做题过程中可直接应用.第一节不等式的性质第二节区间的概念介于两个实数之间的所有实数组成的集合称为区间.这两个实数称为区间的端点,两个端点之间的距离称为区间的长.设a,b为任意两个实数,且ab,规定:(1)满足不等式axb的所有实数的集合,称为闭区间,记作a,b;(2)满足不等式axb的所有实数的集合,称为开区间,记作(a,b);(3)满足不等式axb的所有实数的集合

    5、,称为右开区间,记作a,b);(4)满足不等式axb的所有实数的集合,称为左开区间,记作(a,b.第二节区间的概念在数轴上,这些都可以用一条以a和b为端点的线段来表示,如图2-2所示,在图上,区间闭的一端标以实心点,表示区间包括该端点;区间开的一端标以空心点,表示区间不包括该端点,如图2-2所示.区间的长为有限时,称为有限区间.以上四种区间都是有限区间.图2-2第二节区间的概念第二节区间的概念区间的长为无限时,称为无限区间.关于无限区间,有如下规定:(1)满足xa的所有实数的集合,可记作a,);(2)满足xa的所有实数的集合,可记作a,);(3)满足xb的所有实数的集合,可记作-,b;(4)满

    6、足x0(或0),或ax2+bx+c0的解为x2,那么此不等式的解集可表示为:x|x2-3x+20或者x|x2,用区间表示为(-,1)(2,+).下面我们通过例题来学习一元二次不等式的解法.第三节一元二次不等式第三节一元二次不等式第三节一元二次不等式二、一元二次不等式的图像法二、一元二次不等式的图像法中学我们学习了二次函数的有关知识,那么一元二次方程、一元二次不等式与二次函数的关系怎样呢?让我们先看一个例子.例如,二次函数f(x)=x2-x-6的图像如图2-4所示.由图像可以知道当x=-2或x=3时,图像与x轴相交,f(x)=0,即x2-x-6=0;当x3时,图像在x轴上方,f(x)0,即x2-x-60;当-2x3时,图像在x轴下方,f(x)0,即x2-x-60的解集是x|x3.上例表明,由抛物线与x轴的交点可以确定对应的一元二次方程的解和一元二次不等式的解集.第三节一元二次不等式第三节一元二次不等式图2-5我们知道对于一元二次方程ax2+bx+c=0(a0),设=b2-4ac,它的解按照0,=0,0与ax2+bx+c3这样的不等式吗?你能解这样的不等式吗?像这样的不等式称为含有绝对值的不含有绝对值的不等式等式.解绝对值不等式的主要依据是公式公式(1)(1)和不等式的和不等式的性质性质.第五节含有绝对值的不等式

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:应用数学第二章-不-等-式课件.ppt
    链接地址:https://www.163wenku.com/p-3497744.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库